
MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

Three Steps to Improve Jellyfish Search Optimiser

Petr Bujok�

Department of Informatics and Computers, University of Ostrava, Czech Republic

petr.bujok@osu.cz�

Abstract
This paper describes three different mechanisms used in Jellyfish Search (JS) op-
timiser. At first, an archive of good old solutions is used to prevent getting stuck
in the local-optima area. Further, a distribution coefficient β is adapted during
the search process to control population diversity. Finally, an Eigen transforma-
tion of individuals in the reproduction process is used occasionally to cope with
rotated functions. Three proposed variants of the JS optimiser are compared with
the original JS algorithm and nine various well-known Nature-inspired optimisation
methods when solving real-world problems of CEC 2011. Provided results achieved
by statistical comparison show efficiency of the individual newly employed mech-
anisms.

Keywords: Global optimisation, Jellyfish Search optimiser, archive, Eigen trans-
formation, distribution coefficient, experimental comparison.

Received: 04 May 2021
Accepted: 11 June 2021
Published: 21 June 2021

1 Introduction

This paper proposes a new enhanced variant of a suc-
cessful jellyfish search (JS) optimiser. A newly pro-
posed method employs three various mechanisms to
cope with various optimisation tasks, especially real-
world problems.

The JS algorithm belongs to swarm optimisation
methods which are inspired by biosystems from na-
ture. Swarm algorithms are very popular in practical
(real-world) applications in various areas of research,
industry and healthcare services [7, 15].

The main goal of this paper is to propose, apply
and compare a new variant of the JS algorithm. In
this algorithm, three various enhancing elements are
added to achieve higher performance. The variant of
JS is applied on real-world problems to illustrate a real
efficiency when it will be used in practice. Results of
a new algorithm are compared with the original JS
algorithm to detect a proper level of efficiency of the
employed mechanisms. Moreover, a set of well-known
swarm algorithms is used to evaluate the quality of the
proposed method in a more practical way.

The rest of the text is organised as follows. Section 2
describes a basic ideas of the original JS algorithm.
In section 3 introduces a newly proposed JS variant
and its main features. Section 4 briefly describes other
swarm methods used in a comparison. The main ideas
of the performed experiment are assumed in Section 5.
Tables, plots and statistical analysis are discussed in
Section 6. Finally, the overall evaluation of the pro-
posed method is concluded in Section 7.

2 Jellyfish Search Optimiser

In 2021, Chou et al. introduced a novel meta-heuristic
optimisation technique inspired by the behaviour of
jellyfish in oceans called Jellyfish Search (JS) opti-
miser [5]. The relative complex behaviour of real jel-
lyfish in nature was mathematically summed to two
simple rules.

1. Jellyfish follows streams in the ocean or moves in-
side a swarm. These movements are controlled by
‘time control mechanism’.

2. Simply, jellyfish follows areas in the ocean where
a greater amount of nurture is available.

The ocean stream attracts jellyfish because it con-
tains nurture. Therefore, a new position of the ith
jellyfish in the current phase is influenced by the trend
of the ocean stream (1):

yi = xi + rand · (xbest − β · rand ·
∑N

i=1 xi

N
) (1)

where xi is the current position of the jellyfish, xbest is
the position of the current best jellyfish in the swarm,
N is swarm size, and β is a distribution coefficient (β >
0, β = 3).

Further, jellyfish use two kinds of motion in swarm
– passive (2) and active (3). Passive motions are used
in the preliminary stages of swarm formation and are
represented by local motions around jellyfish position.

Passive motions:

yi = xi + γ · rand · (b− a) (2)

where γ (γ > 0) represents a motions coefficient, and
b and a are the upper and lower bounds of the search
space.

29

https://doi.org/10.13164/mendel.2021.1.029
ISSN: 1803-3814 (Printed), 2571-3701 (Online)



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

Active motions:

yi = xi + rand ·
{

xj − xi if f(xj) ≤ f(xi)
xi − xj if f(xj) > f(xi).

(3)

where xj is randomly selected jellyfish from swarm,
different from the current jellyfish xi, and f represents
an objective function.

Finally time control mechanism enables simulate reg-
ulation between jellyfish swarm in ocean and jellyfish
in a swarm by time control function c and constant c0.
When c > c0 jellyfish follows ocean stream, otherwise
jellyfish moves inside a swarm (4):

c =
∣∣∣(1 − FES

maxFES

)
· (2 · rand− 1)

∣∣∣ (4)

where FES is a current number and maxFES is a to-
tal available number of function evaluations of jellyfish
individuals in one algorithm run.

Results of the JS algorithm compared with ten vari-
ous evolutionary algorithms (including Differential evo-
lution, Particle swarm optimisation or Tree seed al-
gorithm) show superiority of JS in 25 problems of
CEC 2005.

Because of the good performance of the JS algo-
rithm, several various studies of the real application of
JS were proposed to illustrate the efficiency and sim-
plicity of this method.

In 2021, Gouda et al. propose an experimental study
presenting an application of the JS algorithm for ex-
tracting unknown parameters of PEM fuel cell mod-
els [8]. Performance of JS is employed to determine
PEM model parameters where three different models
are used in experiments. JS outperforms other optimi-
sation methods in comparison.

In 2021, Abdel-Basset et al. employed an enhanced
variant of JS to identify parameters of Photovoltaic
models [1]. The authors applied a new Premature con-
vergence strategy to increase JS exploitation capability.
Results achieved on four different models illustrate the
superiority of JS compared with other employed known
optimisation methods.

In 2021, Selvakumar et al. used the JS algorithm to
help a Spectrum Defragmentation algorithm to utilise
an Elastic Optical Network (EON) [13]. A comparison
of the proposed algorithm with state-of-the-art spec-
trum defragmentation algorithms illustrate better util-
isation of spectrum and reduce fragmentation complex-
ity.

Despite promising results of JS in a set of CEC 2005
problems [5] and successful aforementioned enhanced
JS variants, in this paper, a new JS variant is proposed
to increase performance on real-world problems.

3 A Novel Jellyfish Search Algorithm

The original JS algorithm provides a good performance
in spite of its simplicity and clarity. The results are
very promising compared to simple optimisation tech-
niques, a comparison with more advanced methods il-
lustrates weak parts of the JS algorithm. In this paper,

a novel variant of JS is proposed, based on three inde-
pendent enhancing approaches. Newly employed mech-
anisms are gradually incorporated into JS to study a
significance of an individual approach. A pseudo-code
of a new JS variant is illustrated in Algorithms 1.

Algorithm 1 Improved JS algorithm

1: initialise and evaluate P = (x1, x2, . . . ,xN )
2: initialise empty archive A . Comment1
3: initialise interval for diversity control . Comment2
4: while stopping condition not reached do
5: if rand < peig then
6: use Eigen coordinate system . Comment3
7: else
8: use standard coordinate system

9: if c ≥ 0.5 then
10: Jellyfish follows ocean stream
11: else
12: if rand > (1 − c) then
13: Jellyfish passive motions
14: else
15: Jellyfish active motions

16: evaluate and update population
17: update distribution coefficient β . Comment4

The pseudo-code is based on steps of the original JS
algorithm where newly added parts are noted by the
‘Comment’ symbol.

3.1 Archive of Good Solutions

In the original JS, the current position of the jellyfish
is replaced by the new position of the jellyfish only if
the new position is better than the current position.
Then, the current position is dismissed. This approach
promises faster convergence, but it can increase the
probability to get stuck in the algorithm in a local so-
lution (minimum) area.

Therefore, the first enhancing mechanism used in JS
is the archive of good old solutions (positions) to store
the solutions for usage in the next generations. The
idea of the archive is very simple. The archive A is
introduced as empty, and in every selection step, when
the current and new jellyfish positions are compared,
the old (current) solution is inserted into A if the new
position is better (f(yi < xi)). When the archive of
size N is fully filled, the newly inserted old good solu-
tion is located to a random position of A.

Notice that storing the individuals into A is per-
formed in all three phases of JS. Using the individu-
als from A is only in the ocean stream (current) phase
(eq. (1) for computing the average coordinates of the
jellyfish population. In the newly proposed JS variant,
the average vector is computed from the union of pop-
ulation P and archive A. It promises a lower speed
of convergence (older good positions are used) but a
higher probability to avoid the local solution area.

30



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

Figure 1: Illustration of jellyfish behaviour in ocean [5]

3.2 Dynamic Diversity Control

The parameters of the original JS algorithm are fine-
tuned to achieve the best possible results in various
optimisation problems. It is also the case of diversity
coefficient β used in the ocean stream phase (eq. (1)).
The authors recommended set β = 3, and this setting
achieves very promising results. In fact, distribution
coefficient β influences the amount of diversity of pop-
ulation used to determine a new jellyfish position. A
higher value of β means a new position farther from
the current best position, and vice versa. Naturally,
when the diversity of the population is small, higher β
helps to generate new positions in more distance from
the best solution, and vice versa.

This idea was transformed in adaptation of distri-
bution coefficient during the search based on current
diversity of jellyfish population. This diversity is sim-
ply estimated by rule (5):

Di =

√√√√ 1

N

N∑
i=1

D∑
j=1

(xij − x̄j)2 , x̄j =
1

N

N∑
i=1

xij (5)

where D represents dimensionality of the problem, and
N is population size. At the beginning of the algo-
rithm, β is set to β = 3, and after each generation, it is
updated based on current diversity as follows. The op-
timal relative diversity of the population is estimated
as linearly decreasing from introduced random popu-
lation to a zero diversity at the end of the run. Then,
value of β is increased by one if the relative diversity
(compared to randomly generated population) is de-
creases under 90% of the optimal value and β is de-
creased by one if relative diversity increases over 110%
of optimal value. Notice that maximal and minimal
possible values of β are 10 and 1. More detail about
the diversity-based adaptation approach is in [12].

3.3 Eigen Transformation

The last step to increase the efficiency of the JS al-
gorithm is based on the Eigen transformation of co-
ordinates. This approach was introduced in [16] to
transform parent individual before crossover operation
in Differential evolution algorithm. Using the Eigen
transformation enables to increase efficiency on rotated
functions.

The idea of Eigen transformation in the JS algorithm
is simple and it is controlled by two parameters – ps
and peig. The value of ps controls portion of the pop-
ulation P used for compute Eigenvectors B (6):

C = BD2BT (6)

where C is covariance matrix of the selected part (ps ·
N) of population and D are Eigenvalues. Then, the
Eigenvectors are employed to transform the original
coordinates of selected individuals.

In each JS generation, either the original coordinate
system or the new Eigen transformed coordinate sys-
tem is applied, based on the second control parameter
peig. If rand < peig, the Eigen transformation is ap-
plied in whole generation, in other cases, the standard
coordinate system is used.

If the Eigen transformation is selected, only several
following steps of JS are influenced by this transforma-
tion. In ocean stream phase (eq. (1)), when the new
position yi is computed, all three individuals, ie. xi,
xbest, and average population vector are transformed
by Eigen transformation (7) (an example of the current
jellyfish position xi):

x
′

i = BTxi. (7)

Then, after the position updating rule is performed
the new position is transformed from the Eigen coor-
dinate system back to the original coordinate system

31

P. Bujok



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

using (8):

yi = By
′

i. (8)

Similarly, in the active motions phase, when the
Eigen transformation is selected, both xi, xj are trans-
formed, and also xi is transformed in passive motions
phase.

Based on the aforementioned description, the newly
proposed variant of JS using all three enhancing mech-
anisms is called JSeigDiA (‘eig’ for Eigen transforma-
tion, ‘Di’ for distribution coefficient adaptation, and
‘A’ for the archive of good old solutions). Moreover,
the efficiency of the archive is studied when a variant
of JSeigDi (without the archive) is also applied. Fi-
nally, adaptive control of distribution coefficient β is
evaluated when it is removed, and JSeig variant is also
used in experiments. Therefore, three gradual variants
of enhanced JS are proposed, applied and compared to
achieve more complex conclusions.

4 Nature-Inspired Methods in Comparison

In the experiments, not only the original JS and its
enhanced variants are used. Nine various well-known
nature-inspired algorithms are employed to make a
more complex comparison of newly proposed JS vari-
ants. The description of the methods is presented in
chronological order.

Particle swarm optimisation (PSO) was introduced
in 1995 and it is very popular swarm-intelligence in-
spired optimiser. In this experiment, the enhanced
PSO variant with particle velocities mechanism, con-
trolled by the variation coefficient w and coefficient c
is used [14]. The value of w is set as a linear inter-
polation from wmax = 1 to wmin = 0.3 during the
search. The value of parameter balancing between a
local and a global part of the updated velocity is set
c = 1.05. Velocity is for next generation computed
as vi,G+1 = wG+1 × vi,G + c U(0, 1) (pbest − xi) +
c U(0, 1) (gbest − xi), where G represents generation,
U(0, 1) a random number generated from uniform dis-
tribution, xi is current position of particle, pbest is up-
to-now the best position of the current particle, and
gbest is the best particle in swarm history. In 2018,
an advance cooperative variant of PSO with the Fire-
fly algorithm (called HPSO) was proposed [2]. The
parameters of HPSO are set to recommended values
α = 0.2, β0 = 2, γ = 1, and c1 = c2 = 1.49445.

In 2000, the self-organising migration algorithm
(SOMA) was proposed as a model of a pack of preda-
tors hunting the prey [20]. The best settings of the
control parameters of SOMA used in this experiment
were found in preliminary experiments. The length
of the jump of an individual from the leader is set
PathLenght = 2, the step size is Step = 0.11, and per-
turbation is Prt = 0.1. The best performing strategy
was all-to-one, and it is applied to a comparison.

In 2005, the artificial bee colony algorithm (denoted
ABC) was proposed, and it is a very popular optimi-
sation technique. The only input parameter is called

limit= N , which represents a maximum number of un-
successful new food positions necessary to find a new
random food position [9].

In 2009, the cuckoo search algorithm (denoted
CS) modelling cuckoos’ breeding strategy was in-
troduced [19]. The probability of the cuckoo’s eggs
laid in a host-bird nest is pa = 0.25, and the control
parameter of Lévy flight random walk is set to λ = 1.5.

The bat algorithm (BAT hereafter) uses parame-
ter settings that follow the original publication [17].
Maximal and minimal frequencies are set up fmax =
2, fmin = 0, the local-search loudness parameter is
initialised Ai = 1.2 for each bat-individual and then
reduced if a new bat position is better than the old
one using coefficient α = 0.9. The emission rate pa-
rameter is initialised for each bat-individual ri = 0.1
and increased by parameter γ = 0.9 in the case of a
successful offspring.

In 2014, the firefly algorithm (FFL in the exper-
iments), was introduced as the model of real fire-
flies [18]. The control parameters are set to recom-
mended values, randomisation parameter α = 0.5,
light absorption coefficient γ = 1, and attractive-
ness is updated using its initial and minimal values
β0 = 1, βmin = 0.2.

In 2014, the grey wolf optimiser (labelled GWO in
results) representing hunting and hierarchic behaviour
of grey wolves was introduced [11]. GWO hierarchical
strategy employs four different kinds of wolves - al-
pha, beta, delta, and omega. The main role of wolves-
individuals is hunting, which is composed of the three-
level process - search, gird and attack the prey. Besides
population size, the only control parameter of GWO is
component a, and it decreases linearly from 2 to 0.

In 2015, Kiran proposed a new optimisation algo-
rithm inspired by the relation between trees and seeds
called Tree-seed (TSA) algorithm [10]. The TSA algo-
rithm models the processes of trees producing the seed
in nature, where the ground is defined as search space.
Each tree is able to generate a given number of seeds.
In TSA, ns seeds for each tree are randomly selected
number between 10− 25% of the number of trees (N),
i.e. ns = round((0.1 + 0.15 ∗ rand) ∗N). The process
of the new seed’s position (S) distribution is controlled
by the parameter ST.

In 2020, Bujok proposed a novel variant of TSrAeig,
which significantly outperformed the original TSA [3].
TSrAeig uses an archive of never-used newly generated
solutions. Further, after each generation of each tree,
all seeds better than the tree are located to pool SB ,
and randomly selected seed from SB replaces the tree
coordinates. Finally, the Eigen transformation is used
for some tree individuals to achieve better results in
rotated functions.

5 Experimental Settings

At first, a test suite of 22 real-world problems of the
CEC 2011 competition in the Special Session on Real-
Parameter Numerical optimisation is used [6]. The

32



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

functions differ in the computational complexity and
the dimension of the search space from D = 1 to
D = 240, where the dimensionality of most problems
exceeds D = 20. The experimental settings required
for this set is used in our experimental comparison.
For each algorithm and problem, 25 independent runs
were performed. The run of the algorithm is stopped
when the prescribed number of function evaluation
MaxFES= 150000 is reached. The partial results after
one third and two-thirds of MaxFES are also studied.
The solution of the problem is given by a point in the
terminal population with the smallest function value.
It is due to the correct solution of real-world problems
is unknown.

The population size of compared algorithms in com-
parison is set to the best possible values recommended
by authors or achieved in previous huge compar-
isons [4]. Therefore N = 50 is for JS, JSeig, JSeigDi,
JSeigDiA, TSA and TSrEigA. N = 30 is for GWO and
HFPSO. N = 90 is for SOMA and FFL. ABC uses
N = 125, CS set N = 15, and N = 40 is for PSO.

Parameters of Eigen transformation used in JSeig,
JSeigDi, and JSeigDiA are set ps = 0.5 and peig = 0.4.
Remaining parameters of the algorithms are set to val-
ues recomended by authors. All the algorithms are im-
plemented in Matlab 2020b, where also statistical anal-
ysis is assessed. All computations were carried out on
a standard PC with Windows 7, Intel(R) Core(TM)i7-
4700 CPU 3.0 GHz, 16 GB RAM.

6 Results

In the experiment, three variants of newly proposed JS
algorithm are compared with the original JS and nine
various nature-inspired methods on set of 22 real-world
problems.

At first, the Friedman test is applied to provide
an overall insight into the comparison of the algo-
rithms’ performance. The test is applied on medi-
ans of achieved minimum values at three stages of the
search (FES = 50,000, 100,000, and 150,000) for the
CEC 2011 set. The results are presented in Table 1
where also the absolute ranks are depicted in brack-
ets. The null hypothesis on equivalent efficiency of the
methods is rejected with p < 5×10−6. The algorithms
in these tables are ordered from left to right based on
the mean ranks from the Friedman test at the end of
the search for CEC 2011 and regarding average ranks
overall dimensions.

It is obvious that the newly proposed JSeigDiA,
JSeigSi, and JSeig outperform other algorithms in the
experiment. The original JS algorithm takes the eighth
position what underlines the significant performance of
the enhancing mechanisms. Besides JS, very nice re-
sults achieve the original CS algorithm (outperforms
enhanced HFPSO and TSrEigA).

When studying the mean ranks of the proposed JS
variants, it is clear that using all three mechanisms is
the most efficient choice. Interesting are ranks of the
remaining two proposed algorithm, where better mean

rank achieve variant without adaptation of distribu-
tion coefficient (JSeig). But differences between the
proposed three JS variants are relatively small.

Further, a comparison of the methods on each real-
world problem independently is performed using the
Kruskal-Wallis test. For each problem, the null hy-
pothesis was rejected (significance level was less than
1 × 10−10), and mean-ranks of the methods are pro-
vided. Then, the number of problems, where the meth-
ods achieve the best result (denoted 1st), the second-
best result (2nd), the third-best result (3rd), and the
worst result (last), are provided for each algorithm in
comparison (see Table 2). Moreover, columns of the ta-
ble are ordered from left to right based on the numbers.
The first three positions are the same as in the Fried-
man test, newly proposed JS variants achieve the best
performance in comparison (they achieve best results
in 4, 3, and 3 problems out of 22, and they are never the
worst). The superiority of the employed mechanisms
(compared to the original JS) is obvious.

Finally, the proposed the best performing JSeigDiA
is compared with each of twelve remaining algorithms
using the Wilcoxon rank-sum test. The achieved re-
sults are divided into three tables, Table 3, 4, and
5. In the second column, the median values of the
best performing algorithm for each problem are pre-
sented. In remaining columns, medians of other algo-
rithms from comparison are depicted with a specific
symbol of achieved significance in brackets. Symbol of
‘≈’ denotes similar results of the best and compared
methods. Symbols of ‘+’ (0.01 < sig. < 0.05), ‘++’
(0.001 < sig. < 0.01) or ‘+++’ (sig. < 0.001) mean
significantly better results for the compared method.
Finally, symbols of ‘-’ (0.01 < sig. < 0.05), ‘- -
’ (0.001 < sig. < 0.01) or ‘- - -’ (sig. < 0.001)
mean significantly better results for the best perform-
ing (JSeigDiA) method. For better overview, the num-
ber of achieved significant or similar differences are
computed in the last rows of the tables (+/ ≈ /−).

The best performing JSeigDiA is outperformed by
other methods in comparison from zero to five prob-
lems. Significantly better results achieves JSeigDiA
from 2 problems (JSeig and JSeigDi) to 20 problems
(FFL). All three newly proposed JS variants use Eigen
transformation. Therefore median values of success
of the standard JS approach and Eigen transforma-
tion approach are computed in Table 6. The presented
numbers represent the number of new jellyfish positions
better than the currently occupied positions. The more
efficient strategy (standard or Eigen) is for each stud-
ied algorithms print bold. For the Eigen approach, the
percentage of achieved success is printed in a bracket.
In the last row of the table, the count of better re-
sults is illustrated. It is clear that the efficiency of the
Eigen transformation is similar to the original approach
(measured by the number of higher values). Also in
problems from T01 to T09, T11.1, and T11.2 are ob-
vious percentage values about 40% what follows de-

33

P. Bujok



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

Table 1: Mean ranks and absolute ranks of all algorithms from the Friedman tests.

FES JSeigDiA JSeig JSeigDi CS HFPSO TSrEigA

50000 4.3 (1) 4.5 (2) 4.7 (3) 5.3 (4.5) 5.3 (4.5) 5.8 (6)
100000 4.2 (2) 4.1 (1) 4.8 (3) 5.9 (5) 5.7 (4) 6.3 (6)
150000 4.3 (1) 4.3 (2) 4.7 (3) 6 (4) 6.1 (5) 6.3 (6)

GWO JS SOMA ABC PSO TSA FFL

9.8 (11) 6.2 (7) 6.5 (8) 8.1 (9) 8.4 (10) 10 (12) 12.1 (13)
8.8 (11) 6.4 (7) 6.7 (8) 8 (9) 8.4 (10) 9.5 (12) 12.3 (13)
6.4 (7) 6.4 (8) 7.2 (9) 8.2 (10) 9 (11) 9.6 (12) 12.5 (13)

Table 2: Number of first, second, third, and last positions of each algorithm.

position JSeigDiA JSeig JSeigDi HFPSO CS ABC

1st 4 3 3 2 2 2
2nd 2 5 3 2 2 0
3rd 5 2 4 4 1 1
last 0 0 0 0 0 1

TSrEigA JS GWO SOMA PSO TSA FFL

1 1 1 1 0 0 0
2 2 1 1 0 0 0
1 0 1 1 0 0 0
0 0 0 0 0 2 18

Table 3: Medians and significance from Wilcoxon rank-sum tests between the best JSeigDiA and other methods.

fun JSeigDiA JS JSeigDi JSeig ABC

T01 4.46E-11 0.76059 (≈) 7.63E-07 (≈) 6.42531 (≈) 12.262 (- - -)
T02 -20.7965 -19.3604 (≈) -17.336 (-) -20.1539 (≈) -20.1491 (≈)
T03 1.15E-05 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈)
T04 13.7708 13.7708 (≈) 13.7708 (≈) 13.7708 (≈) 14.3647 (- - -)
T05 -26.5427 -25.3325 (≈) -25.9431 (≈) -26.3003 (≈) -35.5302 (+++)
T06 -21.3333 -20.589 (≈) -21.5207 (≈) -20.6392 (≈) -26.4367 (+++)
T07 1.52953 1.51177 (≈) 1.54214 (≈) 1.50031 (≈) 1.41103 (++)
T08 220 220 (≈) 220 (≈) 220 (≈) 220 (≈)
T09 28845.2 2928.43 (- - -) 37463.9 (-) 29361.6 (≈) 88653.4 (- - -)
T10 -21.4661 -21.2862 (- - -) -21.6011 (≈) -21.5434 (≈) -16.219 (- - -)

T11.1 52157.2 52446.1 (-) 52393.1 (≈) 52095.1 (≈) 58276.2 (- - -)
T11.2 1.14E+06 1.19E+06 (-) 1.11E+06 (≈) 1.08E+06 (≈) 2.68E+06 (- - -)
T11.3 15444.2 15451.4 (- - -) 15444.2 (≈) 15444.2 (≈) 15459.9 (- - -)
T11.4 18266.8 19127 (- - -) 18256.2 (≈) 18231.6 (≈) 19308.5 (- - -)
T11.5 32842.5 33053.4 (- - -) 32859.3 (≈) 32839.4 (≈) 33115.5 (- - -)
T11.6 135661 140902 (- - -) 134903 (≈) 135071 (≈) 139131 (- - -)
T11.7 1.93E+06 1.97E+06 (- - -) 1.94E+06 (≈) 1.95E+06 (-) 1.34E+08 (- - -)
T11.8 944415 944419 (≈) 942701 (+) 943848 (≈) 2.59E+07 (- - -)
T11.9 1.21E+06 1.36E+06 (- -) 1.27E+06 (≈) 1.20E+06 (≈) 2.44E+07 (- - -)
T11.10 943615 945904 (-) 943039 (≈) 944003 (≈) 2.66E+07 (- - -)

T12 14.9037 15.4036 (≈) 15.1054 (≈) 15.7421 (-) 18.2716 (- - -)
T13 22.6246 22.6895 (≈) 22.8781 (≈) 22.6796 (≈) 20.4791 (+++)
Σ 0/11/11 1/19/2 0/20/2 4/3/15

fined peig = 0.4. But in many problems, the success
of Eigen transformation is more than 90% (99% for
T11.4). This is very interesting information for further
development of JS variants. Despite significant dif-
ferences between algorithms in comparison, there are
many problems where several algorithms achieved the
same or very similar results. For these cases, the best
solution achieved by each algorithm for each real-world

problem is recorded in 17 stages of the search process
to illustrate the convergence ability of compared meth-
ods. Further, median values of the recorded solutions
from independent runs are computed. Figs. 2, 3 and
4 depicted convergence lines of all 13 algorithms for
each problem individually. It is clear that the worst
ability to converge provides FFL. Similarly, although
ABC provides promising results in several problems, it

34



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

Table 4: Medians and significance from Wilcoxon rank-sum tests between the best JSeigDiA and other methods.

fun JSeigDiA CS PSO GWO SOMA

T01 4.46E-11 8.41609 (≈) 12.8765 (- - -) 11.6669 (- - -) 11.7076 (- - -)
T02 -20.7965 -17.1041 (- - -) -15.3444 (- - -) -23.807 (+++) -18.7298 (≈)
T03 1.15E-05 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈)
T04 13.7708 13.9285 (- -) 14.3291 (- - -) 13.8308 (- - -) 14.3291 (- - -)
T05 -26.5427 -34.1348 (+++) -31.2519 (+++) -34.1542 (+++) -32.3813 (+++)
T06 -21.3333 -25.5777 (+++) -22.8628 (≈) -23.0059 (++) -27.4297 (+++)
T07 1.52953 1.14084 (+++) 1.45337 (≈) 0.77200 (+++) 1.11902 (+++)
T08 220 220 (≈) 220 (≈) 220 (≈) 220 (≈)
T09 28845.2 3152.87 (+++) 429738 (- - -) 24326.4 (≈) 221914 (—)
T10 -21.4661 -21.5453 (≈) -15.917 (- - -) -12.9574 (- - -) -16.8617 (- - -)

T11.1 52157.2 52390.4 (- -) 1.47E+06 (- - -) 474417 (- - -) 1.27E+06 (- - -)
T11.2 1.14E+06 1.13E+06 (≈) 4.78E+06 (- - -) 1.12E+06 (≈) 3.64E+06 (- - -)
T11.3 15444.2 15444.2 (≈) 15457.2 (- - -) 15463.6 (- - -) 15461.2 (- - -)
T11.4 18266.8 18666.1 (- - -) 18860.7 (- - -) 19210.7 (- - -) 19219.6 (- - -)
T11.5 32842.5 33038.5 (- - -) 33134.5 (- - -) 32993 (- - -) 32863.6 (≈)
T11.6 135661 140929 (- - -) 140281 (- - -) 136626 (-) 133372 (+)
T11.7 1.94E+06 1.94E+06 (≈) 2.28E+06 (- - -) 2.49E+06 (- - -) 1.98E+06 (- - -)
T11.8 944415 962556 (- - -) 955368 (- - -) 956785 (- - -) 980383 (- - -)
T11.9 1.21E+06 1.54E+06 (- - -) 1.44E+06 (- - -) 1.30E+06 (≈) 1.32E+06 (≈)
T11.10 943615 958510 (- - -) 1.04E+06 (- - -) 957703 (- - -) 988279 (- - -)

T12 14.9037 20.639 (- - -) 21.1637 (- - -) 24.3415 (- - -) 18.0423 (- - -)
T13 22.6246 22.1331 (≈) 25.3219 (- - -) 21.7653 (≈) 22.8158 (≈)
Σ 4/8/10 1/4/17 4/6/12 4/6/12

Table 5: Medians and significance from Wilcoxon rank-sum tests between the best JSeigDiA and other methods.

fun JSeigDiA HFPSO FFL TSA TSrAeig

T01 4.46E-11 14.5269 (- - -) 28.4112 (- - -) 1.53821 (≈) 11.4902 (- -)
T02 -20.7965 -26.1267 (+++) -12.6795 (- - -) -5.16811 (- - -) -18.3032 (≈)
T03 1.15E-05 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈) 1.15E-05 (≈)
T04 13.7708 14.3291 (- - -) 19.2793 (- - -) 13.9016 (- - -) 14.3291 (- - -)
T05 -26.5427 -33.6333 (+++) -18.2279 (- - -) -20.8928 (- - -) -32.0809 (+++)
T06 -21.3333 -26.5001 (+++) -14.7311 (- - -) -17.6841 (- - -) -23.0059 (≈)
T07 1.52953 0.87531 (+++) 2.37051 (- - -) 1.69353 (- - -) 1.0633 (+++)
T08 220 220 (≈) 350.555 (- - -) 220 (≈) 220 (≈)
T09 28845.2 18356.8 (≈) 3.18E+06 (- - -) 142246 (- - -) 2145.66 (+++)
T10 -21.4661 -20.4018 (- - -) -7.59723 (- - -) -18.6144 (- - - ) -12.6498 (- - -)

T11.1 52157.2 52296.4 (≈) 2.50E+06 (- - -) 8.47E+07 (- - -) 160929 (- - -)
T11.2 1.14E+06 1.08E+06 (+) 7.33E+06 (- - -) 5.64E+06 (- - -) 1.08E+06 (≈)
T11.3 15444.2 15480 (- - -) 52975.7 (- - -) 15460.2 (- - -) 15470.4 (- - -)
T11.4 18266.8 19360.3 (- - -) 19243 (- - -) 19214.7 (- - -) 19008.2 (- - -)
T11.5 32842.5 33007.9 (- - -) 495711 (- - -) 32947 (- - -) 32922.1 (- -)
T11.6 135661 145074 (- - -) 7.78E+07 (- - -) 136988 (≈) 138291 (≈)
T11.7 1.94E+06 1.95E+06 (-) 1.48E+10 (+++) 3.12E+06 (- - -) 1.96E+06 (- -)
T11.8 944415 956643 (- - -) 1.47E+08 (- - -) 2.66E+06 (- - -) 953995 (- - -)
T11.9 1.21E+06 1.13E+06 (≈) 1.58E+08 (- - -) 3.43E+06 (- - -) 1.40E+06 (- -)
T11.10 943615 951985 (- - -) 1.48E+08 (- - -) 2.65E+06 (- - -) 949856 (- - -)

T12 14.9037 14.9149 (≈) 46.1224 (- - -) 28.3102 (- - -) 18.4757 (- - -)
T13 22.6246 24.5003 (≈) 39.8236 (- - -) 26.1825 (- - -) 20.1104 (++)
Σ 5/7/10 1/1/20 0/4/18 4/6/12

often converges very slowly. Fast convergence ability is
also observed for hybrid HFPSO. In many cases, it gets
stuck in the local minima area (it is outperformed by
other algorithms in comparison). In problems where
newly proposed algorithms are outperformed by some
methods in comparison, it is obvious a significantly de-
creasing trend of the convergence curve for proposed

methods and constant convergence curves for remain-
ing methods (T05, T06). It promises better results
of the proposed JS variants when a search time is in-
creased.

35

P. Bujok



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

Table 6: Efficiency of Eigen transformation in JSeig, JSeigDi, and JSeigDiA.

JSeig JSeigDi JSeigDiA
fun std eig (%) std eig (%) std eig (%)

T01 7340 4792 (39) 5815 3575 (38) 6942 4251 (38)
T02 969 549 (36) 789 479 (38) 1174 662 (36)
T03 766 511 (40) 780 513 (40) 773 522 (40)
T04 2891 1938 (40) 2819 1884 (40) 2860 1921 (40)
T05 503 448 (47) 498 430 (46) 500 405 (45)
T06 712 597 (46) 687 553 (45) 727 566 (44)
T07 262 281 (52) 265 308 (54) 265 288 (52)
T08 351 136 (28) 354 126 (26) 351 132 (27)
T09 37669 26492 (41) 37471 26316 (41) 36860 26633 (42)
T10 7569 23385 (76) 7192 22842 (76) 7220 23258 (76)

T11.1 19336 13525 (41) 19233 13081 (40) 19605 13804 (41)
T11.2 38106 27326 (42) 38398 27334 (42) 38440 27623 (42)
T11.3 345 6151 (95) 339 4720 (93) 350 5425 (94)
T11.4 113 6931 (98) 122 7412 (98) 119 7841 (99)
T11.5 823 20523 (96) 842 20404 (96) 802 19461 (96)
T11.6 408 3357 (89) 378 3401 (90) 374 3510 (90)
T11.7 904 3108 (77) 840 2541 (75) 787 2394 (75)
T11.8 1001 2163 (68) 982 2349 (71) 975 2388 (71)
T11.9 1147 6606 (85) 1131 6103 (84) 1072 6847 (86)
T11.10 970 2312 (70) 981 2482 (72) 954 2395 (72)

T12 8257 7508 (48) 7696 8452 (52) 10658 11589 (52)
T13 7508 14263 (66) 6891 15190 (69) 6979 15756 (69)
Σ 11 11 10 12 10 12

7 Conclusion

In this paper, a new enhanced variant of the success-
ful jellyfish search optimiser is proposed. In this algo-
rithm, three independent mechanisms are applied to
increase the ability to solve various real-world opti-
misation problems. Such, three gradual versions of
the proposed JS variant are compared – the com-
plete JSeigDiA variant, the variant without archive
(JSeigDi), and the variant without archive and adapta-
tion of the distribution coefficient (JSeig). These grad-
ual variants enable the study efficiency of the applied
enhancing mechanisms, besides the original JS algo-
rithm, nine various nature. Inspired methods are used
to evaluate the performance of the newly proposed al-
gorithm on a set of 22 real-world problems CEC 2011.

Presented results of performed data illustration and
data analysis are depicted in tables and figures. We
can assume that the newly proposed JS variant sig-
nificantly increases the performance of the original JS
algorithm. Also, regarding all 22 problems, new algo-
rithm variants significantly outperform nine employed
nature-inspired methods. Studying the algorithms’
ability to converge to the true solution, the proposed
method is not the fastest method, but in many prob-
lems, the trend of convergence of new JS variant is
decreasing compared to the rather constant trend of
other algorithms in comparison. Comparison of suc-
cess of the standard JS approach with the newly used
Eigen transformation illustrates balanced results. But
in many problems, the Eigen approach achieves success
up to 99% (T11.4).

The achieved results very promising, and they will
be used in future extensions of JS and other nature-
inspired algorithms.

References

[1] Abdel-Basset, M., Mohamed, R.,
Chakrabortty, R. K., Ryan, M. J., and
El-Fergany, A. An improved artificial jellyfish
search optimizer for parameter identification of
photovoltaic models. Energies 14, 7 (2021).

[2] Aydilek, I. B. A hybrid firefly and particle
swarm optimization algorithm for computation-
ally expensive numerical problems. Applied Soft
Computing 66 (2018), 232–249.

[3] Bujok, P. Enhanced tree-seed algorithm solving
real-world problems. In 2020 7th International
Conference on Soft Computing Machine Intelli-
gence (ISCMI) (2020), pp. 12–16.

[4] Bujok, P., Tvrdik, J., and Polakova, R.
Comparison of nature-inspired population-based
algorithms on continuous optimisation problems.
Swarm and Evolutionary Computation 50 (2019),
100490.

[5] Chou, J.-S., and Truong, D.-N. A novel meta-
heuristic optimizer inspired by behavior of jellyfish
in ocean. Applied Mathematics and Computation
389 (2021), 125535.

[6] Das, S., and Suganthan, P. N. Problem
definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on

36



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

real world optimization problems. Tech. rep., Ja-
davpur University, India and Nanyang Technolog-
ical University, Singapore, 2010.

[7] Fujisawa, K., Shinano, Y., and Waki, H.,
Eds. Optimization in the Real World. Springer
Japan, 2016.

[8] Gouda, E. A., Kotb, M. F., and El-
Fergany, A. A. Jellyfish search algorithm for
extracting unknown parameters of PEM fuel cell
models: Steady-state performance and analysis.
Energy 221 (2021), 119836.

[9] Karaboga, D., and Akay, B. A comparative
study of artificial bee colony algorithm. Applied
Mathematics and Computation 214, 1 (2009), 108–
132.

[10] Kiran, M. S. Tsa: Tree-seed algorithm for con-
tinuous optimization. Expert Systems with Appli-
cations 42, 19 (2015), 6686–6698.

[11] Mirjalili, S., Mirjalili, S. M., and Lewis,
A. Grey wolf optimizer. Advances in Engineering
Software 69 (2014), 46–61.

[12] Poláková, R., and Bujok, P. Popular opti-
misation algorithms with diversity-based adaptive
mechanism for population size. Recent Advances
in Soft Computing and Cybernetics: Studies in
Fuzziness and Soft Computing 403 (2021), 171 –
182.

[13] Selvakumar, S., and Manivannan, S. S. A
spectrum defragmentation algorithm using jelly-
fish optimization technique in elastic optical net-
work (EON). Wireless Pers Commun (2021).

[14] Shi, Y., and Eberhart, R. A modified par-
ticle swarm optimizer. In 1998 IEEE Interna-
tional Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computa-
tional Intelligence (1998), pp. 69–73.

[15] Surantha, N., Lesmana, T., and Isa, S. M.
Sleep stage classification using extreme learn-
ing machine and particle swarm optimization for
healthcare big data. J Big Data 8, 14 (2021).

[16] Wang, Y., Li, H.-X., Huang, T., and Li, L.
Differential evolution based on covariance matrix
learning and bimodal distribution parameter set-
ting. Applied Soft Computing 18 (2014), 232–247.

[17] Yang, X.-S. A new metaheuristic bat-inspired
algorithm. In Nicso 2010: Nature Inspired
Cooperative Strategies for Optimization (2010),
J. Gonzalez, D. Pelta, C. Cruz, G. Terrazas, and
N. Krasnogor, Eds., vol. 284 of Studies in Compu-
tational Intelligence, Univ Laguna; Carnary Govt;
Spanish Govt, pp. 65–74. International Workshop
on Nature Inspired Cooperative Strategies for Op-
timization NICSO 2008, Tenerife, Spain, 2008.

[18] Yang, X.-S. Nature-Inspired Optimization Algo-
rithms. Elsevier, 2014.

[19] Yang, X.-S., and Deb, S. Cuckoo search via
Lévy flights. In 2009 World Congress on Nature
Biologically Inspired Computing NaBIC (2009),
pp. 210–214.

[20] Zelinka, I., and Lampinen, J. SOMA – self
organizing migrating algorithm. In MENDEL,
6th International Conference On Soft Computing,
Brno, Czech Republic (2000), R. Matousek, Ed.,
pp. 177–187.

37

P. Bujok



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

T01 T02

T03 T04

T05 T06

T07 T08

Figure 2: Convergence ability of 13 nature-inspired optimisation methods (T01 - T08).

38



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

T09 T10

T11.1 T11.2

T11.3 T11.4

T11.5 T11.6

Figure 3: Convergence ability of 13 nature-inspired optimisation methods (T09 - T11.6).

39

P. Bujok



MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX

T11.7 T11.8

T11.9 T11.10

T12 T13

Figure 4: Convergence ability of 13 nature-inspired optimisation methods (T11.7 - T13).

40


