
 
 

MENDEL — Soft Computing Journal, Volume 24, No. 2, December 2018, Brno, Czech RepublicX 

 
 
 
STOCHASTIC INTEGER WASTE MANAGEMENT PROBLEM

SOLVED BY A MODIFIED PROGRESSIVE
HEDGING ALGORITHM
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Brno University of Technology, Faculty of Mechanical Engineering
1Institute of Mathematics

2Institute of Process Engineering
3Institute of Automation and Computer Science

Czech Republic
Jakub.Kudela@fme.vutbr.cz

Abstract: In this paper we describe a real-world large-scale stochastic integer waste-management decision
making problem. The problem consists of choosing the optimal locations and capacities of new incineration
plants, that will be used for the disposal of waste. To solve this problem, we implement a modified version of
the progressive hedging algorithm. The presented case study with real-world data concerns the situation in the
Czech Republic.
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1 Introduction

Cautious waste management is one of the pivotal segments of the global environmental policies. As such, it
possesses a multitude of opportunities for the operations research approaches (see [18]) to guide the decision
making and to assess the possible outcomes and risks that result from the implementation of these decisions.
Forecasting of the waste management related uncertain parameters (mainly the production of different kind of
waste) was investigated in [17] and [19].

In this paper, our main concerns are the transportation and treatment of waste, and the decision on building
new incinerator plants. The authors of [14] and [16] described the problem of designing test networks in
waste management, while in [8] we can find a method for choosing the optimal capacity of a new plant. The
transportation and facility location problems in waste management in an uncertain setting were investigated by
[5] and [12]. A game-theoretic insight into the waste management problems can be found in [15].

In this paper, we describe a novel utilization of the Progressive Hedging algorithm [4] for the stochastic
integer waste management problem as an alternative to the hybrid/metaheuristic approaches [3, 6, 9] and to
the Benders Decomposition method [10, 11].

2 Model Building

As was stated in the Introduction, our model will describe the waste management decision making problem of
deciding on the location and capacity of new incinerator plants, that will be used for the treatment of waste. The
objective encompasses the construction costs of the incinerators, the transportation costs on a road network,
penalties for waste that is not properly disposed of (either in an incinerator or in a landfill) and the profits from
waste treatment from the incinerator plants and landfills.

In the absence of uncertainty, the model would be a mixed-integer optimization problem (see [1]), but this
is not our case. Since we do not know the amount of waste produced in the cities, we treat it as a random
variable with different possible realization (or scenarios) – this leads to a more complicated two-stage integer
stochastic optimization problem (see [2]), where the first-stage (or planning) decision is on the construction
of the incinerator plants (before we get to “know” the particular realization of the random variable) and the
second-stage decisions are the operating ones (transportation) that are carried out once we know the values of
the produced waste. The notation we use to describe the model is summarized in the following table:
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 Table 1: The notation

Indices and sets Parameters
i ∈ N index of nodes ni,k coordinates of nodes
k ∈ K index of coordinates Mi,e incidence matrix
e ∈ A index of arcs ce transportation costs
s ∈ S index of scenarios gs profit in the incinerator
ic ∈ Nc ⊂ N index of cities qs penalty for waste not removed
it ∈ Nt ⊂ N index of traffic points tic,s quantity of trash in cities
is ∈ Ns ⊂ N index of incinerators de distance by arcs
il ∈ Nl ⊂ N index of landfills Prs probability of scenario
Variables hs profit in landfills
z total profit f freight in CZK per km using lorry
ye,s amount of transported units b costs to build the incinerator
pic,s number of penalty units u upper bound for penalty
xis decision to build the incinerator (binary)
kis,s capacity of the incinerator

The transportation cost is expressed as ce = f ·de. The production of waste in each city tic,s differs according
to the scenario s. In our case, we consider 3 scenarios, each with probability Prs = 1/3,∀s ∈ S.

tic,s =


+0%, s = s1,

−20%, s = s2,

+20%, s = s3.

The problem at hand can be written as:

max −
∑
is xisb+

∑
s Prs(

∑
is

∑
e−Mis,eye,sgs −

∑
e ceye,s −

∑
ic pic,sqs +

∑
il

∑
e−Mil,eye,shs)

s.t.
∑
is xis ≥ 1,∑

eMic,eye,s ≤ tic,s, ∀ic, s,∑
ic pic,s ≤ u

∑
ic tic,s, ∀s,

tic,s −
∑
e ye,sMic,e = pic,s, ∀ic, s,∑
eMit,eye,s = 0, ∀it, s,

(
∑
ic tic,s)xis = kis,s, ∀is, s,

−(
∑
eMil,eye,s) ≤ kis,s, ∀is, s,

xis ∈ {0, 1}, ∀is,
ye,s ≥ 0, ∀e, s,
pic,s ≥ 0, ∀ic, s,
kil,s ≥ 0, ∀il, s.

(1)

The different terms in the objective refer to the following: the first term −
∑
is xisb contains the first stage

decision (costs for building incinerators), the next terms represent the second stage decisions - yields in landfills
and incinerators

∑
is

∑
e−Mis,eye,sgs +

∑
il

∑
e−Mil,eye,shs, transportation costs −

∑
e ceye,s and the penalty

term, if we don’t collect the waste −
∑
ic pic,sqs.

The first constraint
∑
is xis ≥ 1, which states that at least one incinerator will be build, belongs to the

first stage decision, whereas the rest of the constraints belong to the second stage. The next constraint,∑
eMic,eye,s ≤ tic,s,∀ic, s, states that the transported units of waste cannot exceed the production in each city

and each scenario.
∑
ic pic,s ≤ u

∑
ic tic,s,∀s gives us the possibility not to collect all the waste, but we can pay

the penalty instead up to u% of the total waste in the each scenario. The penalty is computed as the difference
between the waste production and the number of transported units, pic,s = tic,s −

∑
e ye,sMic,e,∀ic, s. In our

road network, we consider also traffic points. Traffic points can be interpreted as the main junctions and are
mathematically represented as the nodes, in which the inflow equals the outflow. In the model (1), such nodes
are underlined by

∑
eMit,eye,s = 0, ∀it, s setting that there is no production of waste. The dependent variable

kis,s is computed as kis,s = (
∑
ic tic,s)xis,∀is, s and is used in the last constraint, −(

∑
eMil,eye,s) ≤ kis,s,∀is, s,

where the inflow to incinerators cannot exceed the capacity of incinerators.

18

Stochastic Integer Waste Management Problem Solved by a Modified Progressive Hedging Algorithm



 
 

MENDEL — Soft Computing Journal, Volume 24, No. 2, December 2018, Brno, Czech RepublicX 

 
 
 
3 Data for the Real-World Problem

In this section we provide an insight into the data for the real-world model (1). We have at our disposal
historical data about the collection of the municipal waste during the years 2009 and 2015. Each city, landfill
and incinerator has GPS coordinates. Potential coordinates of incinerators (denoted as WtE – waste to energy
plants), and the regions they are located in, are listed in the table below.

Table 2: The positions of the possible incinerator plants

Node Longitude Latitude Region
1WtE 14.09 56.82 Středočeský
2WtE 17.60 56.22 Olomoucký
3WtE 15.77 56.84 Pardubický
4WtE 14.37 56.86 Hlavńı město Praha
5WtE 16.60 55.92 Jihomoravský
6WtE 14.37 56.86 Hlavńı město Praha
7WtE 15.13 56.57 Středočeský
8WtE 14.81 57.02 Středočeský
9WtE 14.37 56.86 Hlavńı město Praha
10WtE 17.75 56.51 Moravskoslezský

To give an inside into how big a problem we are dealing with (in comparison with the example in the
previous section), we list here the size of the different sets. We are considering municipalities with extended
powers ic ∈ Nc, |Nc| = 206, already built landfills an incinerators il ∈ Nl, |Nl| = 114, set of potential incinerators
is ∈ Ns, |Ns| = 10. The set of traffic points it ∈ Nt, Nt = ∅ is an empty set, because the set of edges e ∈ A,
|A| = 2069, has sufficient cardinality for our purpose. This leads to the simplification of the model (1), in which
the constraint

∑
eMit,eye,s = 0 is redundant ∀it, s. The rest of the model (1) holds.

The first stage decision xi is a binary variable and it denotes whether the incinerator is built or not. The
second stage decision ye,s is made after the period of seven years and it denotes the number of transported
waste. We are trying to model if the investment to build an incinerator will come back after the seven years or
how much of the initial building costs will be paid back.

Figure 1: Layout of cities, landfills and possible incinerators.

The layout of cities (blue squares), landfills (magenta circles) and possible incinerators (green circles) can
be seen in the Figure 1. Regions are represented by different shade of violet. The waste distribution among
regions in percentage is shown in the Figure 2.

4 PHA and Results

Stochastic programs (SP) arise in a variety of situations. Examples can be found in server location, electricity
generation, supply chain design, network and so on. The structure of such programs makes them, in general,
difficult to solve. We can however obtain an easier solution using a special structure.

A common approach how to represent uncertainty is to formulate a finite number of discrete scenarios
associated with probabilities for the values of uncertain parameters. Decisions depend on the number of stages
according to which parameter values are assumed to be known to the decision-maker and when the decisions
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must be made. If we combine the constraints of our problem with an objective to minimize expected cost (by
“cost” we can mean also some measure of risk), the resulting SP can become very large. The progressive hedging
algorithm (PHA) represents an effective method for solving multistage SP.

Figure 2: Waste distribution in regions.

The Progressive Hedging Algorithm for the two-stage stochastic mixed-integer problem

To avoid a “collision of notation” with the presented models, we describe the algorithm with the following
notation: λ(s) will denote the first-stage decision (depending on the particular scenario s), µ(s) the second-
stage decision, α the first-stage cost vector, β(s) the second-stage cost vector. Furthermore, to ease the notation,
we collapse all the constraints (or, more precisely, the set that the constraints define) for a particular scenario
(in both stages) into Γ(s).

Step 1: Initialization: iteration ι = 0, price term wι(s) = 0, ∀s ∈ S. For each s ∈ S compute the individual
scenario solution x(s) (with components λ(s) and µ(s)):

max αTλ(s) + β(s)Tµ(s)
s.t. λ(s), µ(s) ∈ Γ(s).

(2)

Step 2: Iteration update: ι = ι+ 1.

Step 3: Aggregation: λ̂ι =
∑
s∈S Prsλ

ι(s).

Step 4: Price update: wι(s) = wι−1(s) + r(λι(s)− λ̂ι(s)).

Step 5: Decomposition: ∀s ∈ S compute:

max αTλ(s) + β(s)T y(s)− wι(s)Tλ(s)− r

2
‖ λ(s)− λ̂ι ‖2

s.t. λ(s), µ(s) ∈ Γ(s).
(3)

Step 6: Termination: If all scenario solutions λ(s) are equal, stop. Else, go to Step 2.

In Step 1 of the algorithm, we solve the model (1) for each scenarios separately. In Step 5, the model (1) is
transformed into:

max −
∑
is xisb+

∑
is

∑
e−Mis,eye,sgs −

∑
e ceye,s −

∑
ic pic,sqs+

+
∑
il

∑
e−Mil,eye,shs +

∑
is−(xiswis,s −

r

2
‖xis − x̂is‖2) ∀s,

s.t.
∑
is xis ≥ 1,∑

eMic,eye,s ≤ tic,s, ∀ic, s,∑
ic pic,s ≤ u

∑
ic tic,s, ∀s,

tic,s −
∑
e ye,sMic,e = pic,s, ∀ic, s,

(
∑
ic tic,s)xis = kis,s, ∀is, s,

−(
∑
eMil,eye,s) ≤ kis,s, ∀is, s,

xis ∈ {0, 1}, ∀is,
ye,s ≥ 0, ∀e, s,
pic,s ≥ 0, ∀ic, s,
kil,s ≥ 0, ∀il, s,

(4)

where r > 0 is a PHA parameter and wis,s is a price vector (whose computation is described in Step 4 of the
PHA algorithm). Athough the model (4) is not a convex optimization problem (since we have binary variables),
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its continuous relaxation is convex – the objective is a linear function plus a sum of squares and the constraints
are all linear. For further information see [4].

The following values of parameters were used in the numerical study f = 3, b = 500,000,000, h ∈ (50; 80),
q ∈ (10,000; 15,000) and r = 108. These value were chosen after careful consideration and a thorough discussion
with experts on waste management. Furthermore, we conducted an analysis of the impact of the incinerator
profit parameter g on the solution. The results are best summarized in Fig. 3 and Fig. 4. When the profit
of the incinerator plants is low (Fig. 3), there seems to be just a small incentive to build these plants and
most of the waste is instead “processed” in landfills – the optimal objective value of this problem setting was
455.4 million CZK. However, as the incinerator profit rises, the model encourages us to build more incinerator
plants with the majority of waste processed in these plants – the optimal objective value of this problem setting
increased to 3,121.4 million CZK.

Figure 3: Selected incinerators (green), transportation flows (red) and waste treatment (chart) for g ∈ (100; 150).

Figure 4: Selected incinerators (green), transportation flows (red) and waste treatment (chart) for g ∈ (400; 500).

5 Conclusion

The paper presents and discusses results of the original implementation of the Progressive Hedging Algorithm
(PHA) for the specific scenario-based two-stage stochastic mixed-integer linear program that has been designed
for the studied real-world waste management problem. At first, an overview of related waste management
problems is given and the modeling challenge is stated as the task to find suitable places for new incinerators,
to optimize their capacities and related waste transport. The model building phase utilizes the notation rules
inherited from the application area for the model elements (indices, parameters, variables). The proposed model
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follows two-stage decision structure and its solved instance is based on the data for the Czech Republic. Because
of the real-world problem’s size PHA is applied as a solution technique and obtained results are visualized by
figures involving coloured maps. The use of PHA algorithm is also suitable for the future research on more
advanced models including pricing and advertising nonlinear terms (see [7]). Unfortunately, the convexity of
the relaxed model will not be achieved, so the PHA will serve as the part of the heuristic solution technique
proposed (such as the one in [13]) in the future.
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