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Abstract
In this paper, we consider a global optimization problem where the objective func-
tion is assumed to be Lipschitz-continuous with an unknown Lipschitz constant.
Building upon the recently introduced BIRECT (BIsection of RECTangles) algo-
rithm, we propose a new diagonal partitioning and sampling scheme. Our frame-
work, named BIRECT-V (V for vertices), combines bisection with the sampling of
two points. In the initial hyper-rectangle, these points are located at 1/3 and 1
along the main diagonal. Unlike most DIRECT-type algorithms, where evaluating
the objective function at vertices is not suitable for bisection, our strategy, when
combined with bisection, provides more comprehensive information about the ob-
jective function. However, the creation of new sampling points may coincide with
existing ones at shared vertices, resulting in additional evaluations of the objective
function and increasing the number of function evaluations per iteration. To over-
come this issue, we propose modifying the original optimization domain to obtain
a good approximation of the global solution. Experimental investigations demon-
strate that this modification positively impacts the performance of the BIRECT-V
algorithm. Our proposal shows promise as a global optimization algorithm com-
pared to the original BIRECT and two popular DIRECT-type algorithms on a set of
test problems. It particularly excels at high-dimensional problems.
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1 Introduction

Global optimization methods have long had a promi-
nent position in many fields. They are becoming more
popular tools due to the variety and nature of the prob-
lems they may be utilized to solve. According to the
method used to find the optimum, global optimization
approaches can generally be divided into two major
categories: deterministic [10, 11, 40, 6] and stochas-
tic methods [19, 56]. In black-box optimization cases,
the development of derivative-free global optimization
algorithms has been forced by the need to optimize var-
ious and often increasingly complex problems in prac-
tice because analytic information about the objective
function is unavailable.
In this paper, we consider the global optimization

problem of the form

min
x∈D

f(x), (1)

where the feasible domain is an n-dimensional hyper-
rectangle D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j =
1, . . . , n}, a, b ∈ Rn and the objective function f(x)
is usually assumed to be Lipschitzian with maybe un-
known Lipschitz constant L, 0 < L < ∞, i.e.,

|f(x)− f(y)| ≤ L ∥x− y∥ , x,y ∈ D. (2)

The norm ∥.∥ denotes usually the Euclidean norm,
but other equivalent norms can also be used [1, 29,
30]. The function f(x) is also supposed to be non-
differentiable; therefore, numerical methods using gra-
dient information cannot be used to solve this kind of
problem.

Various methods have been proposed to solve the op-
timization problem (1)-(2) using different domain par-
tition schemes (see [10, 36, 56]). In global optimization,
a feasible domain is usually a hyper-rectangle; there-
fore, most DIRECT-type methods use hyper-rectangular
partitions. However, other types of sampling and
partitioning schemes may be appropriate to some
optimization problems, e.g., simplicial partitioning
based on one-dimensional trisection or bisection and
sampling at the center (DISIMPL-C[31]) or vertices
(DISIMPL-V[30]). Other diagonal sampling schemes
([36, 37, 39, 34, 35]) use two points per hyper-rectangle
instead of one point; e.g., adaptive diagonal curves
(ADC algorithm[37]) use hyper-rectangular partition-
ing based on one-dimensional trisection and evaluate
the objective function at two vertices of the main di-
agonals. A detailed review of different sampling and
partitioning schemes is summarized in [48] and the ref-
erences given therein.
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DIRECT (DIvide RECTangles) algorithm developed
by Jones[14, 12] is one of the most widely used
partitioning-based algorithms due to its simplicity, and
it only needs one algorithmic parameter ([8, 7, 4, 5, 3,
1]. The algorithm is an extension of classical Lips-
chitz optimization (see, e.g., [29, 2, 32, 38, 41]), where
the need to know the Lipschitz constant is eliminated.
However, DIRECT algorithm may converge slowly if it
gets close to the optimum, requiring it to divide inces-
santly near the location of this optimum. The reason
is that hyper-rectangles that are not potentially opti-
mal (having bad function values at their centers) but
may contain better function values will be selected in
the next iterations. This procedure influences the se-
lection of potentially optimal hyper-rectangles (having
better function values), which need to be selected first.

Since its introduction, various modifications have
been introduced to improve the performance of DIRECT
[4, 5, 8, 7, 12, 13, 14, 3, 21, 20, 22, 23, 24, 25]. Recently,
various DIRECT-type extensions and modifications have
been proposed, aiming to improve the selection of po-
tential optimal hyper-rectangles or by using different
partitioning techniques leading to even more effective
DIRECT-type algorithms [51, 52, 50, 42, 43, 48, 46, 44].
The recent papers [47, 15, 16] provide a good and
comprehensive review of techniques in DIRECT-type al-
gorithms. It significantly contributes to the field of
derivative-free global optimization and serves as a valu-
able resource for researchers and practitioners seeking
to enhance the efficiency and effectiveness of such al-
gorithms.

Contrary to the most DIRECT-type algorithms, which
use a central sampling strategy, the use of two points
instead of one point in the sampling process, as in many
diagonal-type algorithms, may reduce the probability
for a hyper-rectangle with the global minimum to have
a bad function value since the two (the good point
and the bad function value) are in the same hyper-
rectangle.

BIRECT (BIsection of RECTangles) algorithm was
initially developed by Paulavičius et al.[27]. The al-
gorithm samples two points (located at 1/3 and 2/3)
along a diagonal per hyper-rectangle and uses bisection
instead of trisection. Many arguments revealed, in a re-
cent review [13, 26], that BIRECT gives very promising
results compared to other DIRECT-type algorithms.

Since the original BIRECT algorithm was introduced,
the authors in [28] suggested two-phase globally-
biased extensions from [30] to the BIRECT algorithm
called Gb-BIRECT, and a hybridized BIRECT algo-
rithm Gb-BIRMIN is constructed by combining the
globally-biased framework and the local optimization.
They also developed in [28] a version of BIRECT

called BIRECT-l which differs from BIRECTin that
only one hyper-rectangle is selected, even if several
hyper-rectangles are potentially optimal.

This paper introduces a variant of the original
BIRECT by modifiying the location of the sampling
points. Each hyper-rectangle is described by two sam-

pling points, whose positions on the corresponding di-
agonal are located at one-third and at the opposite
farthest vertex.

In contrast to the most DIRECT-type algorithms,
where the evaluation of the objective function at ver-
tices is not favorable for bisection, this sampling strat-
egy, combined with bisection, provides a better approx-
imation of the objective function than central-sampling
methods. Nevertheless, it is observed that the objec-
tive function could be re-evaluated more than twice at
some shared vertices, leading to a significant increase
in function evaluations. This strategy is typical for
diagonal-based algorithms, which produce many un-
necessary sampling points of the objective function.
Every vertex where the function has been evaluated
can belong to up to 2n hyper-rectangles [35, 38, 18].
Especially the algorithm takes significantly longer than
usual to find a solution close to a global optimum.

One of the possible suggestions to overcome these
drawbacks is to consider a particular vertex database to
avoid re-evaluation of the objective function [37]. The
function is evaluated at every vertex only once, and
then the result is directly retrieved from the database
when required [35, 38, 18]. The second alternative is
to group more hyper-rectangles having approximately
the same size in the same group, which effectively re-
duces the set of selected potentially optimal hyper-
rectangles. Some suggested methods are summarized
in [51, 48, 28, 13]. This possibility is not considered in
the present paper but can be observed, for example, in
the case of BIRECT-Vl, since it selects only one poten-
tially optimal hyper-rectangle from each group. This
situation is favorable, especially when a good objec-
tive function value attained at the vertex can belong
to many (up to 2n) hyper-rectangles. One possibility
is to consider an appropriate (tight) Lipschitzian lower
bound, since we observed that Eq. 5 is much more in
favor of BIRECT than of BIRECT-V. Another alternative
that seems very attractive is to modify the original op-
timization domain for some test problems to obtain a
good approximation to the global solution. The in-
fluence of such a modification on the performance of
the BIRECT-V algorithm is as efficient as the number
of function evaluations required to get close to a good
solution.

It is clear that this last alternative does not overcome
the situation in a proper way, but at least it helps to re-
duce considerably the number of function evaluations.

Therefore, the main purpose of this paper is to focus
on this particular scheme (sampling at vertices) with-
out any additional parameters to the BIRECT-V algo-
rithm framework by investigating this new approach
and discussing its advantages and drawbacks.

Consequently, the contribution of this paper is sum-
marized as follows:

• A new modified BIRECT algorithm is suggested,
named BIRECT-V.

• A new variation of the BIRECT-V algorithm, called
BIRECT-Vl is also introduced.
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• The new approach incorporates bisection with
sampling on diagonal vertices, which is not com-
monly used in the majority of existing BIRECT-
type algorithms.

• Numerical Comparison on Test Problems shows
the advantages of the approach.

• It is shown that a modification in the original do-
main can have a positive impact on the perfor-
mance of the BIRECT-V algorithm.

• An innovative extension built upon our approach
to handle global optimization problems involving
Lipschitz continuous functions subject to linear
constraints seems to address a challenging and
rrelevant problem [49].

The remainder of this paper is organized as follows:
In Sect. 2, we outline the working principles of the
original BIRECT. This will make more comprehensible
the ideas behind the BIRECT-V algorithm to be pro-
posed. A description of the new sampling and par-
titioning scheme is given in Sect. 2.2. Implementa-
tion of the BIRECT-V algorithm along with the other
DIRECTtype algorithms is given in Sect. 3. Numerical
investigation and comparison with BIRECT, BIRECT-l,
and two DIRECTtype algorithms on 54 variants of Hedar
test problems [9] is presented in Sect. 3.2. Finally, in
Sect. 4, we conclude the paper with some remarks and
directions for future research.

2 Materials and Methods

In this section we start by giving a description of the
principle of the sampling and division strategies re-
tained from the original BIRECT algorithm. Then we
introduce our suggested method with emphasis on the
sampling strategy. We conclude this section by an il-
lustration of this new scheme.

2.1 From BIRECT to BIRECT-V

The original BIRECT (BIsection of RECTangles) algo-
rithm, developed by Paulavičius et al.[27], is based on a
diagonal space-partitioning technique and includes two
main procedures: sampling on diagonals and using bi-
section of hyper-rectangles. The algorithm begins by
scaling the initial search space D to the unit hyper-
cube D̄, where all the variables are returned. At the
initialization step of BIRECT, f(x) is evaluated at two
points ′′lower ′′ l = (l1, . . . , ln) = (1/3, . . . , 1/3)T and
′′upper ′′ u = (u1, . . . , un) = (2/3, . . . , 2/3)T located
on the main diagonal of the normalized domain D̄,
equidistant between themselves and the endpoints of
the diagonal. The hyper-cube is then partitioned into
a set of smaller hyper-rectangles and f(x) is evaluated
over each hyper-rectangle at two diagonal points by
following a specific sampling and partitioning scheme
obeying the two following rules.

2.1.1 Selection Rule

Let the partition of D̄ at iteration k be defined as

Pk = {D̄i : i ∈ Ik},

where D̄i = [ai,bi] = {x ∈ Rn : li ≤ x ≤ ui,∀i ∈ Ik},
li, ui ∈ [0, 1] and Ik is the set of indices identifying
the subsets defining the current partition Pk. At the
generic kth iteration, starting from the current parti-
tion Pk of D̄i, a new partition Pk+1 is obtained by
bisecting a set of potentially optimal hyper-rectangles
from the previous partition Pk. The identification
of a potentially optimal hyper-rectangle is based on
the lower bound estimates for f(x) over each hyper-
rectangle by fixing some rate of change L̃ > 0 (which
has a role analogous to a Lipschitz constant). A hyper-
rectangle D̄j , j ∈ Ik. We call potentially optimal a
hyper-rectangle j if ∀i ∈ Ik, the following inequalities
hold

min
{
f(lj), f(uj)

}
− L̃δj ≤ min

{
f(li), f(ui)

}
− L̃δi,(3)

min
{
f(lj), f(uj)

}
− L̃δj ≤ fmin − ε|fmin|, (4)

where the measure (distance, size) of the hyper-
rectangle is given by

δi =
2

3
∥bi − ai∥, (5)

ε > 0 is a positive constant, and fmin is the current
best known function value. A hyper-rectangle j is po-
tentially optimal if the lower bound for f computed by
the left-hand side of (3) is optimal for some fixed rate
of change L̃ among the hyper-rectangles of the current
partition Pk. Inequality (4) ensures guarding against
an excessive emphasis on the local search [14].

2.1.2 Division and Sampling Rule

After the inital covering, BIRECT-V moves to the future
iterations by partitioning potentially optimal hyper-
rectangles and evaluating the objective function f (x)
at their new sampling points.

New sampling points are obtained by adding and
subtracting from the previous (old) ones a distance
equal to the half-side length of the branching coordi-
nate. This way, old sampled from the previous itera-
tions are re-used in descendant subregions.

A vital aspect of the algorithm is how the selected
hyper-rectangles D̄i, i ∈ Ik are divided. For every po-
tentially optimal hyper-rectangle the set of the maxi-
mum coordinates (edges) is computed, and every po-
tentially optimal hyper-rectangle is bisected (divided in
halves of equal size), along the coordinate (branching
variable xbr, 1 ≤ br ≤ n), having the largest side length
(dibr) and by first considering the coordinate directions
with the lowest index j (if more coordinates may be
chosen), where function values are more promising,
[55].

br = min

{
argmax
1≤j≤n

=
{
dij =

∣∣bij − aij
∣∣}} , (6)
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The partitioning process continues until a prescribed
number of function evaluations has been performed, or
a stopping criterion is satisfied. The best (smaller)
found objective function value f(x̄) over all sampled
points of the final partition, and the corresponding gen-
erated point x̄, provide an approximate solution to the
problem.

Further details and comprehensive description of the
original BIRECT algorithm can be found in Paulavicius
et al.[27].

2.2 Description of the New Sampling Scheme

In this subsection, we present the basic idea of the new
sampling scheme in a more general setting. An illustra-
tion is given in a two-dimensional example in Fig. 1 and
Fig. 2. Since our new method is based on the original
BIRECT algorithm, BIRECT-V follows the same hyper-
rectangle selection and subdivision procedure, unlike
the sampling method which is done in a different way.

In the initialization phase, BIRECT-V normal-
ize the search domain to an n-dimensional unit
hyper-rectangle D̄1

0, and evaluates the objective
function f(x) at two different diagonal points: ′′third ′′

ti = (ti1, . . . , t
i
n) = (1/3, . . . , 1/3)T and ′′vertex ′′

vi = (vi1, . . . , v
i
n) = (1, . . . , 1)T . The scaled hyper-

rectangle is considered as the only trivial selected
POH.

In the succeeding iterations, POHs are selected and
bisected in essentially the same way as BIRECT, with
the change that in inequalites (3) and (4), the sampled
points li and ui are replaced by ti = li and vi = ui +
1
3∥b

i−ai∥ respectively, and using the same measure of
the hyper-rectangle given by Eq. (5).

Selected POHs are divided with the restriction that
only along the coordinate (branching variable xbr, 1 ≤
br ≤ n), having the largest side length (dibr), and
by first considering the coordinate directions with the
smallest index j (if more coordinates may be chosen).
This restriction guarantees that the hyper-rectangle
will reduce on every dimension. Potentially optimal
hyper-rectangles are shown in the left-side of Fig. 3,
and correspond to the lower-right convex hull of the
set of points.

Formalizing our sampling and partitioning schemes
in a more general case. Suppose that at iteration k,
D̄i

k = [ai,bi] = {x ∈ D̄ : 0 ≤ aij ≤ xj ≤ bij ≤ 1, j =
1, ..., n, ∀i ∈ Ik} is a hyper-cube.

Since all the variables (xj , j = 1, ..., n) of D̄i
k have

the same side lengths (dij =
∣∣bij − aij

∣∣, j = 1, ..., n), D̄i
k

is bisected (divided in halves) across the middle point
1
2 (a

i
1+bi1) of the coordinate direction with the smallest

index (xj , j = 1) into two hyper-rectangles D̄i+1
k , and

D̄i+2
k of equal side lengths (see Fig. 1, iteration 1 for

illustration).

After D̄i
k is bisected, the first iteration is performed

by sampling two new points from the old ones.

The new point ti+2 is obtained by adding or sub-
stracting from the old point one third side-length dibr/3

to the lower coordinate of the branching variable. Also
the new point vi+1 is obtained from the old one by
subtracting or adding the whole side length dibr, while
keeping all the rest of coordinates issued from ti and
vi unchanged.
In the case where D̄i

k is a hyper-rectangle, new
sampled points are obtained, after distinguishing the
branching variable (br), by adding or substracting the
required side length from the coordinate on which we
branch, pursuant the following rule:

If tij < vij , then

ti+2
br = tibr +

dibr
3

, and vi+1
br = vibr − dibr, (7)

otherwise, i.e., if tij > vij , then

ti+1
br = tibr −

dibr
3

, and vi+2
br = vibr + dibr. (8)

The two new points are obtained as follows:

ti+2 = (ti1, . . . , t
i
br ± di

br

3 , . . . , tin) = (ti1, . . . , t
i
br ±

|bi1−ai
1|

3 , . . . , tin),

and

vi+1 = (vi1, . . . , v
i
br ± dibr, . . . , v

i
n) = (vi1, . . . , v

i
br ±∣∣bi1 − ai1

∣∣, . . . , vin).
Each descending hyper-rectangle D̄i+1

k and D̄i+2
k re-

tainss one sampled point ti and vi, respectively from
their ancestor D̄i

k, At the same time, old sampling
points are re-used in descending hyper-rectangles as
ti+1 = ti and vi+2 = vi. More precisely:

ti+1 = ti =
(
ti1, . . . , t

i
n

)
= (ai1 +

1

3

∣∣bi1 − ai1
∣∣ , . . . , ain +

1

3

∣∣bin − ain
∣∣)

= (ai+1
1 +

2

3

∣∣bi+1
1 − ai+1

1

∣∣ , . . . , ai+1
n +

1

3

∣∣bi+1
n − ai+1

n

∣∣),
and

vi+2 = vi =
(
vi1, . . . , v

i
n

)
=

(
ai1 +

∣∣bi1 − ai1
∣∣ , . . . , ain +

∣∣bin − ain
∣∣)

=
(
ai+2
1 +

∣∣bi+2
1 − ai+2

1

∣∣ , . . . , ai+2
n +

∣∣bi+2
n − ai+2

n

∣∣) .
The BIRECT-V algorithm continues in this way by

sampling two new points in each potentially optimal
hyper-rectangle, by adding and subtracting the re-
quired side-length from the old points, and bisecting
through the longest coordinate until some stopping rule
is satisfied. After subdivision, each rectangle resulting
from the previous iteration retains one point from its
predecessor.

Notice that the sampled points vi+1 and vi+1 in
D̄i+1

k belong to the same diagonal (see Fig. 1 for illus-
tration). This is a straightforward consequence of The-
orem 1 in [27]. The same conclusion holds for hyper-
rectangle D̄i+2

k .
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Figure 1: Description of the initialization and the first three iterations used in the new sampling scheme on
on the Branin test problem. Each iteration is performed by sampling two new points (blue color) issued from
the old ones (red color) and bisecting potentially optimal hyper-rectangles (shown in gray color) along the
coordinate (branching variable xbr, 1 ≤ br ≤ n), having the largest side length (dibr, where dij =

∣∣bij − aij
∣∣,

j = 1, ..., n) and by first considering the coordinate directions with the smallest index j (if more coordinates
may be chosen).

Finally, let us emphasize that, in contrast to the
naming convention used in [27] of the sampling points
as “lower” (l) and “upper” (u), to make differentiate
two points belonging to the same hyper-rectangle, we
can assume without any confusion that the new points
are affected as “third” t and “vertex” v. In this way,
the two points are always identified during all the op-

timization process even if they are “lower” or “upper”.

It is also of importance to stress again, that our new
sampling scheme differs in its unique and distinctive
way on how new sampled points are created by using
different side-lengths, in contrast to direct-type algo-
rithms and diagonal sampling strategies, where they
use the same side-lengths.
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Figure 2: Illustration of selection, sampling and partitioning schemes ranging from iteration 4 to 5 on the
Branin test problem. A situation where two adjacent hyper-rectangles share the same vertex. After bisection
of the lower-left hyper-rectangle in iteration 4, the new created point fall exactly with the one in the adjacent
hyper-rectangle. This point is marked with a circle in iteration 5.

2.2.1 Illustration

Let t1 = (t11, t
1
2) = (1/3, 1/3) and v1 = (v11 , v

1
2) =

(1, 1)T denote two points lying on the main diagonal
(see initialization in Fig. 1) of hyper-rectangle D̄1

0 =
[a1,b1] = [a11, b

1
1]× [a12, b

1
2].

Without losing generality, we restrict our illustra-
tion to two iterations only; the other situations are the
same. In (Fig. 1, iteration 2), D̄3

2 and D̄4
2 are POHs.

For hyper-rectangle D̄3
2, as there is only one longest

side (coordinate j = 2) with side length d32 = 1. There-
fore using the rule in Eq. 7, the new sampling points
t7 and v6 are expressed as follows:

t7 =
(
t71, t

7
2

)
=

(
t31, t

3
2 +

d32
3

)
=

(
2

3
,
2

3

)
,

v6 =
(
v61 , v

6
2

)
=

(
v31 , v

3
2 − d32

)
= (1, 0) .

For hyper-rectangle D̄4
2, we use the second rule given

by Eq. 8. The new sampling points are located at (see
Fig. 1, iteration 2):

t8 =

(
t41 −

d41
3
, t42

)
=

(
t41 −

1

3
, t42

)
=

(
1

6
,
2

3

)
,

v9 =
(
v41 + d41, v

4
2

)
=

(
v41 + 1, v42

)
=

(
1

2
, 1

)
.

However, in Fig. 2, we encounter a situation where
two adjacent hyper-rectangles share the same vertex.
After bisection of the lower-left hyper-rectangle in it-
eration 4, the newly created point falls exactly with

the one in the adjacent hyper-rectangle. This point
is marked with a circle in iteration 4. This situation
is shown on the right side of Fig. 3), where we dis-
tinguish three sampled points at which the objective
function has been evaluated twice at this vertex. Such
a difference becomes more pronounced as optimization
proceeds.

2.2.2 Main steps of the BIRECT-V Algorithm

The BIRECT-V algorithm main steps are shown in Al-
gorithm 1, where the inputs are problem (f), optimiza-
tion domain (D), and some stopping criteria: required
tolerance (ϵpe), the maximal number of function evalu-
ations (Mmax), and the maximal number of iterations
(Kmax). BIRECT-V returns the value of the objective
function found (fmin), and the point (xmin) as well as
the algorithmic performance measures: percent error
(pe), number of function evaluations (m), and number
of iterations (k) after termination.

The BIRECT-V algorithm begins the initialization
phase by the normalization of the feasible domain (D),
evaluating the objective function (f) at the two first
sampling points t1 and v1, measuring and setting stop-
ping conditions (see Algorithm 1, lines 2-4). lines 5-21
of Algorithm 1 describes the main while loop, which
is executed until one of the stopping conditions spec-
ified is met. As explained in the previous section
(see Subsubsect. 2.2.1), the BIRECT-V algorithm, at
the beginning of each iteration, identifies the set of
POHs (see Algorithm 1, line 7, excluding steps 7 (high-
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Figure 3: Geometric interpretation of potentially optimal hyper-rectangles using the BIRECT-V algorithm on
the Branin test function in the seventh iteration: (right side), POHs correspond to the lower-right convex hull
of points marked in blue color (left side). The position of six points (values of f(x)) obtained in BIRECT can be
clearly distinguished. We observe three sampled points at which the objective function has been re-evaluated.

lighted in magenta color), which are performed only
on the BIRECT-Vl algorithm).(see Algorithm 1, line 6),
then bisects all POHs ( Algorithm 1, line 11) and cre-
ates the new sampling points ti and vi of generated
hyper-rectangles (see Algorithm 1, line 12). Finally,
BIRECT-V found a solution, and the performance mea-
sures are returned (see Algorithm 1, line 22).
The structure of BIRECT-V is outlined in Algo-

rithm 1.

2.2.3 Convergence

Since BIRECT-V is based on the ideas of BIRECT, there-
fore the convergence of BIRECT-V could be deter-
mined as many times as other DIRECT-type algorithms
[14, 12, 8, 7], in the sense of the ”everywhere-dense”
type of convergence (see[33]). In addition, the conti-
nuity of the objective function in the neighborhood of
global minima is a sufficient assumption that guaran-
tees convergence.

3 Results and Discussion

This section provides a description of the experimen-
tal results, their interpretation, and the experimen-
tal conclusions. we compare the performance of our
newly introduced modification, BIRECT-V, and its vari-
ant, called BIRECT-Vl, which differs from BIRECT-V in
that, if several rectangles are tied for being potentially
optimal, only one of them is selected. with the original
BIRECT algorithm, BIRECT-l [27, 28], and two other
well-known DIRECT-type algorithms [14, 12, 8, 7].

3.1 Implementation

As the BIRECT-V algorithm is based on the original
BIRECT algorithm, we use the same measure of the size
of the hyper-rectangle.

Note that in the DIRECT algorithm, this size is mea-
sured by the Euclidean distance from its center to a
corner, while in DIRECT-l, it corresponds to the infinity
norm, permitting the algorithm to collect more hyper-
rectangles having the same size. In BIRECT-Vl, the
number of potentially hyper-rectangles in each group,
to be further divided, is reduced to at most one hyper-
rectangle.

In Table 1 are listed the test problems from[9] used in
this comparison, which consist in total of 54 global op-
timization test problems with dimensions varying from
n = 2 to n = 10, with the main attributs: problem
number, problem name, dimension (n), faisible domain
(D), number of local minima, and known minimum
(f∗). Note that these problems could also be found in
[53], and in a more detailed version in [50] and related
up-to-date versions. In our study, we chose to bench-
mark using the Hedar test set [9] instead of alternatives
like the BBOB set and the GKLS generator [16, 17].
This choice aligns with the specific objectives and scope
of our research. It’s important to emphasize that we
are comparing BIRECTv here only with other “pure”
DIRECT-type algorithms. Consequently, our primary
objective was to explore two distinct strategies: one
involving sampling and bisection techniques employed
in the new modification of BIRECT, contrasted with the
original version of BIRECT,one sampling commonly em-
ployed in the majority of DIRECT-type algorithms. Uti-
lizing multiple benchmark sets, we ensure a compre-
hensive analysis of our method’s performance across
various problem domains. This choice allows us to as-
sess our method’s generalizability and robustness by
evaluating its performance on a diverse set of optimiza-
tion problems.

Some of these test problems have several variants,
e.g. (Bohachevsky, Hartmann, Shekel), while others
(Ackley, Dixon and Price, Levy, Rastrigin, Rosenbrock,
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l

iteration:    1   fmin:    4.6082847879    f evals:        2
.
.
iteration:   50   fmin:    3.2479917988    f evals:       12
.
.
iteration:  150   fmin:    0.0007342074    f evals:       14
.
.
iteration:  170   fmin:    0.0002239623    f evals:        4
.
.
iteration:  188   fmin:    0.0002239623    f evals:        8
iteration:  189   fmin:    0.0002225978    f evals:       10
iteration:  190   fmin:    0.0000152596    f evals:       10

 

.

iteration:   50   fmin:    3.2479917988    f evals:      522

iteration:  133   fmin:    0.0042301342    f evals:     2028
iteration:  134   fmin:    0.0040898808    f evals:     1294
iteration:  135   fmin:    0.0039448443    f evals:     2422
iteration:  136   fmin:    0.0037944837    f evals:     2482

iteration:  150   fmin:    0.0007342074    f evals:     1746
.
iteration:  189   fmin:    0.0002225978    f evals:     2430
iteration:  190   fmin:    0.0000152596    f evals:     3306

Figure 4: Iteration progress of the BIRECT-Vl algorithm on the left-hand side and BIRECT-V on the right-hand
side while solving the Ackley (No. 3, n =10, from Table 5) test problem.

Table 1: Key characteristics of the Hedar test problems[9].

Problem Problem Dimension Feasible region No. of local Optimum
No. name n D = ([aj , bj ], j = 1, . . . , n) minima f∗

1∗, 2∗, 3∗ Ackley 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5∗ Bohachevsky 1 2 [−100, 110]2 multimodal 0.0
6∗ Bohachevsky 2 2 [−100, 110]2 multimodal 0.0
7∗ Bohachevsky 3 2 [−100, 110]2 multimodal 0.0
8 Booth 2 [−10, 10]2 unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 multimodal 0.0
11, 12, 13 Dixon & Price 2, 5, 10 [−10, 10]n unimodal 0.0
14 Easom 2 [−100, 100]2 multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16∗ Griewank 2 [−600, 700]2 multimodal 0.0
17 Hartman 3 [0, 1]3 4 −3.86278
18 Hartman 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20, 21, 22 Levy 2, 5, 10 [−10, 10]n multimodal 0.0
23∗ Matyas 2 [−10, 15]2 unimodal 0.0
24 Michalewics 2 [0, π]2 2! −1.80130
25 Michalewics 5 [0, π]5 5! −4.68765
26 Michalewics 10 [0, π]10 10! −9.66015
27 Perm 4 [−4, 4]4 multimodal 0.0
28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
30 Power Sum 4 [0, 4]4 multimodal 0.0
31∗, 32∗, 33∗ Rastrigin 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39∗ Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44∗, 45∗, 46∗ Sphere 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47∗, 48∗, 49∗ Sum squares 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52∗, 53∗, 54∗ Zakharov 2, 5, 10 [−5, 11]n multimodal 0.0
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Table 2: Preliminary results during the first run of the BIRECT-V algorithm.
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Schwefel, Sphere, Sum squares, Zakharov) and can be
tested for different dimensionality.
Finally, notice that it may occur occasionally that

at the initial steps of the algorithm, the sampling is
performed near the global minimizer. In this particular
situation, the feasible domain was modified in the same
way as in[27], i.e., the upper bound was increased. For
clarity, the modified test problems are marked with an
asterisk.

Implementation and comparison of the newly in-
troduced scheme with the original BIRECT together
with other DIRECT-type algorithms were performed in
the MATLAB programming language, using MATLAB
R2016a on an EliteBook with the following hardware
settings:

Intel Core i5-6300U CPU @ 2.5 GHz, 8 GB of mem-
ory, and running on the Windows 10 operating system
(64-bit). Potentially optimal hyper-rectangles are iden-
tified using modified Graham’s scan algorithm. In our
implementation, the output values are rounded up to
10 decimals. A test problem is considered successful if
an algorithm returns a value of an objective function
that does not exceed 10−4 error or a minimizer xmin

that achieves a comparable value in [43].
The algorithms were stopped either when the point x̄

(noted also xmin) was generated such that the following
stopping criterion was satisfied:

pe =

{
f(x̄)−f∗

|f∗| ≤ 10−4, f∗ ̸= 0,

f(x̄) ≤ 10−4, f∗ = 0,
(9)

(where f∗ is the known global optimum) or when the
number of function evaluations exceeds the prescribed
limit of 500, 000. (The maximum number of iterations

was set to 100, 000 but usually it is supposed to be
unlimited.)

The comparison is based on two criteria: the best-
found function value f(x̄) and the number of function
evaluations (f.eval.). For each test problem, the aver-
age and median numbers of function evaluations are
shown at the bottom of each table. The best number
of function evaluations is shown in bold font in Table 5.
The number of iterations and the execution time (mea-
sured in seconds) are only reported in Tables 2 and 3
in the link https://data.mendeley.com/datasets/

x9fpc9w7wh.

3.2 Discussion

In this subsection, we discuss the efficiency of the newly
introduced BIRECT-V algorithm and compare it with
the original BIRECT, BIRECT-l (see [28, 27]) and two
DIRECT-type algorithms. In Table 2, we report the re-
sults obtained by BIRECT-V and BIRECT-Vl when the
algorithm is running in the usual way without addi-
tional parameters.

In Table 3 are reported the results when the best-
found objective function value f(x̄) found by the
BIRECT algorithm is used as a known optimal (mini-
mal) value (f∗). In Table 5, are summarized the ex-
perimental results for all tested algorithms are sum-
marized and compared in the case where the original
domain (D) was modified. Also, the results related to
this comparison are presented in Table 4.

First, it is easy to observe from Table 2, that our pro-
posed partitioning scheme requires, most often, more
function evaluations than in BIRECT and BIRECT-l,

139

https://data.mendeley.com/datasets/x9fpc9w7wh
https://data.mendeley.com/datasets/x9fpc9w7wh


MENDEL — Soft Computing Journal, Volume 29, No. ,  2023, Brno, Czech RepublicX

Table 3: BIRECT-Vl and BIRECT-V versus BIRECT and BIRECT-l.
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and sometimes does not reach a comparable minimum
function value to that obtained in BIRECT for certain
test problems. This seems inappropriate and makes
the comparison not favorable to our results. This is
the case, for example, of Ackley test problems (No.
1–3).

At the same time, it requires fewer function
evaluations than in DIRECT and DIRECT-l algo-
rithms. Also, the median value is smallest us-
ing BIRECT-Vl (921.000), compared to BIRECT-V

(1681.000), DIRECT-l (1752) and DIRECT (3810)
algorithms.

On the other hand, our framework gives better re-
sults on the basis of the best (minimum) function value
for almost all instances compared to both versions of
BIRECT. In general, the overall average number of ob-
jective functions obtained with BIRECT-V algorithm is
approximately 61, 11% (33 out of 54). To confirm the
above-mentioned fact, it can be seen from Table 3, that
the situation changes completely when the best-found
objective function value f(x̄) found by the BIRECT al-
gorithm is used as a known optimal (minimal) value
(f∗). Both BIRECT-V and BIRECT-Vl algorithms give
on average significantly better results compared to the
original BIRECT- and BIRECT-l algorithms.

The same is observed, especially for some problems
(for n = 10 cases), as for Michalewics (No.26), and
Zakharov (No.54) test problems, while others have
reached exactly the known optimal (minimal) value
(f∗). This is the case of the following test problems:
Perm (No.27), Power Sum (No.30), Rastrigin (No.31–

33), and Zakharov (No.52, 53). These results are con-
firmed by comparing the value of the global minimizer
xmin from the libraries ([9], [53], [48]), and the value of
x̄ generated by the algorithm (see Table 4).

More precisely, for the case of the prob-
lems: Michalewics (No.26), we found
x(10) = [1.57079632679490], Perm (No.27), the
global minimizer found is xmin = [1,2,3,4], Power
Sum (No.30), the global minimum is 0, which is
attained at [2,1,3,2], Rastrigin (No.32), and Zakharov
(No.52-53) test problems, the global minimum is 0,
which is attained at xmin = 0. This situation arises
occasionally, where at the early stages of the sampling
process, the algorithm samples near a global optimum.
Moreover, for some test problems, e.g., (Dixon and
Price (No.13), Michalewics (No.25), Powell (No.29),
Schewefel problem (No.39), Trid (No.51), as previ-
ously pointed out, we observed an excessive number
of function evaluations. In this case, we observe the
following situations:

• There is no improvement in the best function value
after many consecutive iterations. The algorithm
suffers from getting close to a global minimizer,
and the objective function seems to be stagnat-
ing around a certain value, which may be a local
optimum.

• An increasing number of evaluations (per itera-
tion) is observed during the iteration’s progress,
as shown, e.g., in Fig. 4.

Notice that these situations are typical for diagonal-
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Algorithm 1 The BIRECT-V algorithm

1: BIRECT-V (f , D, opt);
Input: Objective function: f , search-space:

D, tolerance: ϵpe, the maximal number
of function evaluations: Mmax, and the maxi-

mal number of iterations: Kmax;
Output: Global minimum: fmin, global min-

imizer: xmin, and performance measures:
m, k and pe (if needed);

2: Normalize the search space D to be the unit hyper-
cube D̄;

3: Initialize t1 = (1/3, . . . , 1/3)T and v1 =
(1, . . . , 1)T , m = 1, k = 1, Ik = {1} and pe;
▷ pe defined in Eq. (9)

4: Evaluate f(t1) and f(v1), and set fmin =
min

{
f(t1), f(v1)

}
, xmin = argmin

x∈{ti,vi}
f(x);

5:

6: while pe > εpe , m < Mmax, k < Kmax do
7: Identify the index set Pk ⊆ Ik of potentially op-

timal hyper-rectangles (POHs) applying Inequa-
tions (Ineq. (3); Ineq. (4));

8: Select at most one POH from each group
; // Only in BIRECT-Vl

9: Set Ik = Ik\{Pk};
10:

11: for i ∈ Pk do
12: Select the branching variable br (coordinate

index) using Eq. (6);
13: Divide D̄i into a two new hyper-rectangles

D̄m+1 and D̄m+2;
14: Create the new sampling points tm+1 and

vm+2; ▷seeillustration. ??;
15: Evaluate f(tm+1) and f(vm+2)
16: Set fm+1

min = min
{
f(tm+1), f(vm+1)

}
and

fm+2
min = min

{
f(tm+2), f(vm+2)

}
;

17: Update the partition set Ik = Ik ∪ {m +
1,m+ 2};

18:

19: if fm+1
min ≤ fmin or fm+2

min ≤ fmin then
20: Update fmin and xmin;

21: Update performance measures: k, m and pe;

22: Return : fmin, xmin and algorithmic performance
measures: m, k and pe.

based algorithms as well as for DIRECT-type algorithms.
A detailed review could be found in [13]. Let us illus-
trate the above situations in the case of our sampling
strategy. Assume that a global minimum is near one of
the two sampled points located at 1/3 and 2/3 along
one of the diagonals of a hyper-rectangle. This sit-
uation is in favor of BIRECT, since it samples one of
these two points per hyper-rectangle. However, for the
BIRECT-V algorithm, it may produce many unnecessary
sampling points of the objective function at vertices
before this optimum is reached. Every vertex could be
shared up to 2n hyper-rectangles, where the function

has been re-evaluated. In this case, the algorithm takes
significantly longer than usual to find a good solution
close to the global optimum. This can be observed from
the results given in Table 5, where the two algorithms
reached approximatively the same best function value
in some situations.

In the opposite scenario, i.e., if the global optimum
point is located at the vertex of a hyper-rectangle,
BIRECT- has a contrary impact to the previous situa-
tion. As the optimization proceeds, BIRECT-V requires
fewer function evaluations than BIRECT, since many ad-
jacent hyper-rectangles could share the same vertex.

In contrast to the previous situations, the same ob-
jective function value can be attained in many dif-
ferent points of the feasible domain, as in the case
of the Branin test problem (No.9), where xmin =
[3.13965, 2.275] for BIRECT-V, while for BIRECT, xmin

= [9.42383, 2.471]. This situation is current for multi-
modal problems (having multiple global minima), sym-
metrical problems, and (convex) quadratic test prob-
lems. Therefore, BIRECT-V requires fewer function
evaluations, thus leading to a much larger set of se-
lected potentially optimal hyper-rectangles having the
same size and objective function value.

For the problems where BIRECT-V failed to converge
most often, we suggested a modification to the original
optimization domain to obtain a good approximation
reasonably closer to the real (known) global optimum.
The performance of the BIRECT-V algorithm is better
compared to the original results. It is clear that this
strategy does not overcome the situation in a proper
way, but it allows the algorithm to avoid unnecessary
sampling of objective function points at vertices and
reduces considerably the number of function evalua-
tions.

It should be stressed that we did not adopt any spe-
cific rule or known method for how the optimization
domain is modified. Just slightly modify the domain
until we find a minimizer close to the known solu-
tion, or at least to the one obtained by BIRECT. For
example, For the Schewefel problem (No. 39), we ob-
tained xmin =[420.9635416667] for BIRECT-V, and xmin

= [420.9686279297] for BIRECT-Vl. The domain was
modified up to [−500, 700]10, see [50, 42, 43].

Note that some results reported in Table 5, and Ta-
ble 4 could be improved more and more, e.g., Ack-
ley problem 1, 2 and 3 could be improved to get f(x̄)
= 1.27161957e − 05, with a global minimizer: xmin

=[0.0000031789, ...]. Also, it is shown that some prob-
lems are sensitive to the domain modification, while
others don’t really require such a modification.

From Table 5, the numerical results prove that both
BIRECT-Vl and BIRECT-V algorithms produce the best
results based on the best found objective function
value, with about 89% (48 out of 54) for BIRECT-Vl,
and 87% (47 out of 54) for BIRECT-V. On the other
hand, we observe that the number of function evalua-
tions is most often smallest for the BIRECT (for about
33 out of 54 of the test problems) and (30 out of 54) of
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the BIRECT-l problems) when compared to BIRECT-V

and BIRECT-Vl respectively, in particular for the test
problems having the same minimum value.
To conclude this comparison, it is important to no-

tice that, despite the excessive number of evalautions
due to many unnecessary sampling points at some
shared vertices, BIRECT-Vl produces the best results
in terms of the lowest function values and, on aver-
age, the almost smallest number of function evaluations
compared to other algorithms.

4 Conclusions and Future Works

This paper proposes a new diagonal partitioning strat-
egy for global optimization problems. A modification
of the BIRECT algorithm based on bisection and a novel
sampling scheme, contary to the most DIRECT-type al-
gorithms, where the evaluation of the objective func-
tion at vertices of hyper-rectangles are not suitable
for bisection. The newly introduced BIRECT-V and
its variant BIRECT-Vl were compared against BIRECT,
BIRECT-l, and two DIRECT-type algorithms[27, 28].
The experimental results revealed that the new sam-

pling scheme gives significantly better results for al-
most all test problems, particularly when the faisible
domain is modified.

Further considerations may be investigated using ad-
ditional assumptions to improve this version. One of
these possible improvements is to evaluate the objec-
tive function only once at each vertex of each hyper-
rectangle, where the objective function values at ver-
tices could be stored in a special vertex database, thus
avoiding re-evaluation of the objective function at cer-
tain shared vertices in adjacent hyper-rectangles. An-
other feature, as shown during the previous test pro-
cess, is to find a specific rule about how the change
in the original optimization domain should be applied
in order to improve the performance of the BIRECT-V

algorithm (see [48, 46, 45, 54]).
Finally, the results could also be extended to other

test problems from [42]. All these observations may be
considered for future research directions.

Acknowledgement: We would like to express our
gratitude to Pr. M. Bentobache from who provided
various suggestions for improvement of the results re-
ported in Table 2.
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Table 4: Global minimizer found by the BIRECT-V algorithm using Hedar test problems [9] with modified domain
from Table 5.
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Table 5: Comparison between BIRECT-Vl, BIRECT-V, BIRECT-l, BIRECT, DIRECT-l, and DIRECT algorithms.

P
r
o
b
le

m
B
I
R
E
C
T
-
V
l

B
I
R
E
C
T
-
V

B
I
R
E
C
T
-
l

B
I
R
E
C
T

D
I
R
E
C
T
-
l

D
I
R
E
C
T

N
o
.

f
(
x̄
)

f.
e
v
a
l.

f
(
x̄
)

f.
e
v
a
l.

f
(
x̄
)

f.
e
v
a
l.

f
(
x̄
)

f.
e
v
a
l.

f
(
x̄
)

f.
e
v
a
l.

f
(
x̄
)

f.
e
v
a
l.

1
1
.5

2
×

1
0
−

5
2
1
8

1
.5

2
×

1
0
−

5
2
6
0

2
.5

4
×

1
0
−

5
1
7
6

2
.5

4
×

1
0
−

5
2
0
2

7
.5

3
×

1
0
−

5
1
3
5

7
.5

3
×

1
0
−

5
2
5
5

2
1
.5

2
×

1
0
−

5
5
2
4

1
.5

2
×

1
0
−

5
2
7
2
8

2
.5

4
×

1
0
−

5
4
5
4

2
.5

4
×

1
0
−

5
1
2
6
8

7
.5

3
×

1
0
−

5
1
7
7
7

7
.5

3
×

1
0
−

5
8
8
4
5

3
1
.5

2
×

1
0
−

5
1
2
8
0

1
.5

2
×

1
0
−

5
1
3
7
0
4
0

2
.5

4
×

1
0
−

5
8
7
4

2
.5

4
×

1
0
−

5
4
7
7
9
2

3
.5

7
4
4
5

>
5
0
0
0
0
0

7
.5

3
×

1
0
−

5
8
0
9
2
7

4
8
.7

7
×

1
0
−

5
6
4
0

8
.7

7
×

1
0
−

5
1
0
3
4

9
.1

7
×

1
0
−

5
4
3
6

9
.1

7
×

1
0
−

5
4
3
6

9
.2

9
×

1
0
−

5
2
4
7

9
.2

9
×

1
0
−

5
6
5
5

5
1
.8

3
×

1
0
−

6
2
5
4

3
.1

7
×

1
0
−

5
5
2
4

4
.0

2
×

1
0
−

5
4
6
8

4
.0

2
×

1
0
−

5
4
7
6

3
.0

9
×

1
0
−

6
2
0
5

3
.0

9
×

1
0
−

5
3
2
7

6
1
.5

3
×

1
0
−

6
2
5
2

1
.5

3
×

1
0
−

6
2
8
4

3
.3

5
×

1
0
−

5
4
7
2

3
.3

5
×

1
0
−

5
4
7
8

2
.5

8
×

1
0
−

6
2
3
3

2
.5

8
×

1
0
−

5
3
4
5

7
2
.8

8
×

1
0
−

6
2
8
4

2
.8

8
×

1
0
−

6
2
8
2

3
.6

8
×

1
0
−

5
4
7
4

3
.6

7
×

1
0
−

5
4
8
0

8
.2

1
×

1
0
−

5
5
7
3

8
.2

1
×

1
0
−

5
6
9
3

8
2
.9

9
×

1
0
−

6
3
0
0

2
.9

9
×

1
0
−

6
3
3
4

6
.1

0
×

1
0
−

5
1
8
8

6
.1

0
×

1
0
−

5
1
9
4

6
.5

8
×

1
0
−

5
2
1
5

6
.5

8
×

1
0
−

5
2
9
5

9
0
.3

9
7
9
1

6
5
6

0
.3

9
7
9
1

4
9
2

0
.3

9
7
9
0

2
4
2

0
.3

9
7
9
0

2
4
2

0
.3

9
7
8
9

1
5
9

0
.3

9
7
8
9

1
9
5

1
0

9
.8

2
×

1
0
−

5
2
3
2
0

9
.8

2
×

1
0
−

5
1
9
1
0

9
.8

2
×

1
0
−

5
7
9
4

9
.8

2
×

1
0
−

5
7
9
4

3
.8

3
×

1
0
−

5
3
3
7
9

6
.0

8
×

1
0
−

5
6
5
8
5

1
1

4
.0

1
×

1
0
−

5
8
1
0

4
.0

1
×

1
0
−

5
7
8
4

4
.8

4
×

1
0
−

5
7
2
2

4
.8

4
×

1
0
−

5
7
2
2

5
.3

2
×

1
0
−

5
4
8
5

6
.2

5
×

1
0
−

5
5
1
3

1
2

7
.5

7
×

1
0
−

5
1
0
8
7
2

7
.5

7
×

1
0
−

5
8
4
4
6

7
.1

5
×

1
0
−

5
4
0
6
0

7
.1

5
×

1
0
−

5
4
0
6
0

6
.4

5
×

1
0
−

5
5
4
8
4
3

6
.4

5
×

1
0
−

5
1
9
6
6
1

1
3

7
.0

2
×

1
0
−

5
3
5
4
9
2

7
.6

0
×

1
0
−

5
5
0
9
2
2

9
.5

2
×

1
0
−

5
1
6
2
8
6
2

9
.5

2
×

1
0
−

5
1
6
4
8
2
6

0
.6

6
6
6
7

>
5
0
0
0
0
0

5
.7

9
×

1
0
−

5
3
7
2
6
1
9

1
4

−
0
.9

9
9
9
9

1
8
0

−
0
.9

9
9
9
9

1
0
8
2

−
0
.9

9
9
9
9

4
8
0

−
0
.9

9
9
9
9

1
6
4
2
0

−
0
.9

9
9
9
9

6
8
5
1

−
0
.9

9
9
9
9

3
2
8
4
5

1
5

3
.0

0
0
0
0

2
8

3
.0

0
0
0
0

2
8

3
.0

0
0
1
9

2
7
4

3
.0

0
0
1
9

2
7
4

3
.0

0
0
0
9

1
1
5

3
.0

0
0
0
9

1
9
1

1
6

4
.6

1
×

1
0
−

7
8
4
5
6

4
.6

1
×

1
0
−

7
9
1
6
2

7
.7

6
×

1
0
−

7
5
1
0
6

7
.7

6
×

1
0
−

7
5
1
0
6

4
.8

4
×

1
0
−

6
8
3
7
9

4
.8

4
×

1
0
−

6
9
2
1
5

1
7

−
3
.8

6
2
4
5

2
0
0

−
3
.8

6
2
4
5

2
0
8

−
3
.8

6
2
4
2

3
5
2

3
.8

6
2
4
2

3
5
2

−
3
.8

6
2
4
5

1
1
1

−
3
.8

6
2
4
5

1
9
9

1
8

−
3
.3

2
2
1
4

5
4
2

−
3
.3

2
2
1
4

5
4
2

−
3
.3

2
2
0
6

7
6
4

3
.3

2
2
0
6

7
6
4

−
3
.3

2
2
0
7

2
9
5

−
3
.3

2
2
0
7

5
7
1

1
9

−
1
.0

3
1
5
4

2
0
2

−
1
.0

3
1
5
4

3
3
4

−
1
.0

3
1
5
4

1
9
0

1
.0

3
1
5
4

3
3
4

−
1
.0

3
1
6
2

1
3
7

−
1
.0

3
1
6
2

3
2
1

2
0

9
.0

3
×

1
0
−

6
1
3
6

9
.0

3
×

1
0
−

6
1
5
4

9
.0

9
×

1
0
−

5
1
5
2

9
.0

9
×

1
0
−

5
1
5
2

2
.1

0
×

1
0
−

5
7
7

2
.1

0
×

1
0
−

5
1
0
5

2
1

1
.8

3
×

1
0
−

5
4
5
4

1
.8

3
×

1
0
−

5
5
5
8

1
.8

3
×

1
0
−

5
6
6
0

1
.8

3
×

1
0
−

5
1
0
2
4

3
.6

5
×

1
0
−

5
3
5
9

3
.6

5
×

1
0
−

5
7
0
5

2
2

3
.5

4
×

1
0
−

5
1
1
8
2

3
.5

4
×

1
0
−

5
7
4
4
0

3
.5

5
×

1
0
−

5
1
6
9
8

3
.5

5
×

1
0
−

5
7
9
0
4

9
.6

2
×

1
0
−

5
5
2
9
7

6
.2

3
×

1
0
−

5
5
5
8
9

2
3

2
.7

1
×

1
0
−

5
1
4
8

2
.7

1
×

1
0
−

5
2
0
8

2
.7

1
×

1
0
−

5
9
0

2
.7

1
×

1
0
−

5
9
4

3
.8

1
×

1
0
−

5
7
1

3
.8

1
×

1
0
−

5
1
0
7

2
4

−
1
.8

0
1
3
0

1
8
4

−
1
.8

0
1
3
0

3
1
4

−
1
.8

0
1
1
8

1
2
6

−
1
.8

0
1
1
8

1
2
6

−
1
.8

0
1
2
7

4
5

−
1
.8

0
1
2
7

6
9

2
5

−
4
.6

8
7
4
4

8
4
3
0

−
4
.6

8
7
4
4

7
4
7
2

−
4
.6

8
7
3
6

1
0
1
9
4
2

−
4
.6

8
7
3
6

7
3
8
6
6

−
4
.6

8
7
2
1

2
6
3
4
1

−
4
.6

8
7
2
1

1
3
5
3
7

2
6

−
8
.6

0
5
5
9

>
5
0
0
0
0
0

−
7
.5

5
5
7
6

>
5
0
0
0
0
0

−
7
.3

2
6
6
1

>
5
0
0
0
0
0

−
7
.3

2
6
6
1

>
5
0
0
0
0
0

−
7
.8

4
5
8
8

>
5
0
0
0
0
0

−
7
.8

7
9
1
0

>
5
0
0
0
0
0

2
7

0
.0

0
1
3
2

>
5
0
0
0
0
0

0
.0

0
1
8
9

>
5
0
0
0
0
0

0
.0

0
2
0
3

>
5
0
0
0
0
0

0
.0

0
2
0
3

>
5
0
0
0
0
0

0
.0

4
0
5
4

>
5
0
0
0
0
0

0
.0

4
3
5
5

>
5
0
0
0
0
0

2
8

4
.5

9
×

1
0
−

5
2
7
8
6

4
.5

9
×

1
0
−

5
1
6
7
8

4
.8

6
×

1
0
−

5
1
8
3
2

4
.8

6
×

1
0
−

5
2
1
1
4

6
.5

2
×

1
0
−

5
3
2
3
3
1

9
.0

2
×

1
0
−

5
1
4
2
0
9

2
9

9
.0

0
×

1
0
−

5
2
8
7
2

9
.0

0
×

1
0
−

5
3
0
7
2

9
.7

1
×

1
0
−

5
9
2
8
8
4

9
.7

1
×

1
0
−

5
9
9
5
1
4

0
.0

2
4
8
8

>
5
0
0
0
0
0

0
.0

2
1
4
2

>
5
0
0
0
0
0

3
0

0
.0

0
0
0
0

2
0
4

9
.9

7
×

1
0
−

5
4
0
7
8
8

9
.0

0
×

1
0
−

5
1
7
1
8

9
.0

0
×

1
0
−

5
1
0
8
5
6

0
.0

3
5
2
4

>
5
0
0
0
0
0

0
.0

0
2
1
5

>
5
0
0
0
0
0

3
1

4
.8

1
×

1
0
−

5
7
7
4

4
.8

1
×

1
0
−

5
9
5
8

4
.8

1
×

1
0
−

5
1
5
4

4
.8

1
×

1
0
−

5
1
8
0

2
.3

0
×

1
0
−

5
1
7
2
7

2
.3

0
×

1
0
−

5
9
8
7

3
2

1
.2

9
×

1
0
−

5
9
1
2
6

1
.2

9
×

1
0
−

5
1
1
0
0
8

1
.1

8
×

1
0
−

5
4
7
2

1
.1

8
×

1
0
−

5
1
3
9
4

4
.9

7
4
7
9

>
5
0
0
0
0
0

4
.9

7
4
7
9

>
5
0
0
0
0
0

3
3

1
.9

8
×

1
0
−

5
1
2
4

1
.9

8
×

1
0
−

5
1
4
5
4

2
.3

6
×

1
0
−

5
1
2
5
0

2
.3

6
×

1
0
−

5
4
0
2
5
4

4
.9

7
4
7
9

>
5
0
0
0
0
0

9
.9

4
9
6
7

>
5
0
0
0
0
0

3
4

9
.6

5
×

1
0
−

5
6
9
8

9
.6

5
×

1
0
−

5
7
1
8

9
.6

5
×

1
0
−

5
2
4
2

9
.6

5
×

1
0
−

5
2
4
2

9
.6

5
×

1
0
−

5
2
8
5

9
.6

5
×

1
0
−

5
1
6
2
1

3
5

2
.4

1
×

1
0
−

5
2
4
4
4

2
.4

1
×

1
0
−

5
2
9
7
2

2
.4

1
×

1
0
−

5
1
4
9
4

2
.4

1
×

1
0
−

5
1
7
0
0

5
.7

5
×

1
0
−

5
2
7
0
3

8
.8

0
×

1
0
−

5
2
0
0
2
5

3
6

3
.0

5
×

1
0
−

5
1
9
1
3
4

3
.0

5
×

1
0
−

5
3
1
4
3
0

5
.4

2
×

1
0
−

5
4
5
9
0

5
.4

2
×

1
0
−

5
1
0
9
1
0

8
.2

9
×

1
0
−

5
7
4
0
7
1

8
.2

9
×

1
0
−

5
1
7
4
5
2
9

3
7

1
.3

7
×

1
0
−

7
4
9
2

1
.3

7
×

1
0
−

7
5
6
4

5
.6

4
×

1
0
−

5
2
1
0

5
.6

4
×

1
0
−

5
2
3
6

2
.8

8
×

1
0
−

5
3
4
1

2
.8

8
×

1
0
−

5
2
5
5

3
8

3
.4

2
×

1
0
−

7
2
4
2
7
2

3
.4

2
×

1
0
−

7
1
6
7
0
4

6
.4

1
×

1
0
−

5
1
4
2
2

6
.4

1
×

1
0
−

5
7
2
1
0

7
.2

1
×

1
0
−

5
3
2
2
0
3
9

7
.2

1
×

1
0
−

5
3
1
9
9
9

3
9

1
.7

7
×

1
0
−

8
1
4
9
2

1
.7

7
×

1
0
−

8
8
6
3
0
6

1
.3

0
×

1
0
−

6
5
8
0
5
8

1
.3

0
×

1
0
−

6
3
1
5
9
6
0

1
2
6
9
.3

4
4
4
4

>
5
0
0
0
0
0

1
1
8
7
.6

3
1
9
9

>
5
0
0
0
0
0

4
0

−
1
0
.1

5
2
3
4

6
6
1
8

−
1
0
.1

5
2
3
4

5
8
6
6

−
1
0
.1

5
2
3
4

1
2
0
0

−
1
0
.1

5
2
3
4

1
4
7

−
1
0
.1

5
2
2
3
4

1
5
5

4
1

−
1
0
.4

0
2
0
1

2
2
9
8

−
1
0
.4

0
2
0
1

2
6
0
4

−
1
0
.4

0
2
2
6
9

1
2
2
4

−
1
0
.4

0
2
6
9

1
1
8
0

−
1
0
.4

0
1
9
6

1
4
1

−
1
0
.4

0
1
9
6

1
4
5

4
2

−
1
0
.5

3
5
4
4

2
4
9
8

−
1
0
.5

3
5
4
5

3
3
2
4

−
1
0
.5

3
6
1
8

1
1
5
8

−
1
0
.5

3
6
1
8

1
1
4
0

−
1
0
.5

3
5
3
9

1
3
9

−
1
0
.5

3
5
3
9

1
4
5

4
3

−
1
8
6
.7

2
9
4
4

8
0
6

−
1
8
6
.7

2
9
4
5

1
6
8
4

−
1
8
6
.7

2
4
4
1

2
1
1
4

−
1
8
6
.7

2
4
4
1

1
7
8
0

−
1
8
6
.7

2
1
5
3

2
0
4
3

−
1
8
6
.7

2
1
5
3

2
9
6
7

4
4

1
.1

5
×

1
0
−

5
1
1
2

1
.1

5
×

1
0
−

5
1
9
0

1
.1

5
×

1
0
−

5
1
0
8

1
.1

5
×

1
0
−

5
1
1
8

8
.7

4
×

1
0
−

5
9
1

8
.7

4
×

1
0
−

5
2
0
9

4
5

2
.8

7
×

1
0
−

5
3
9
2

2
.8

7
×

1
0
−

5
1
4
0
0

2
.8

7
×

1
0
−

5
2
8
8

2
.8

7
×

1
0
−

5
7
1
2

7
.4

9
×

1
0
−

5
4
6
5

9
.3

9
×

1
0
−

5
4
6
5
3

4
6

5
.7

4
×

1
0
−

5
1
0
5
4

5
.7

4
×

1
0
−

5
2
7
5
6
6

5
.7

4
×

1
0
−

5
7
8
4

5
.7

4
×

1
0
−

5
1
6
9
7
4

9
.6

3
×

1
0
−

5
2
0
5
7

6
.3

2
×

1
0
−

5
9
9
1
2
3

4
7

8
.7

4
×

1
0
−

5
2
4
8

8
.7

4
×

1
0
−

5
2
8
0

7
.9

4
×

1
0
−

6
2
2
6

7
.9

4
×

1
0
−

6
2
4
4

3
.5

3
×

1
0
−

5
7
7

3
.5

2
×

1
0
−

5
1
0
7

4
8

3
.9

7
×

1
0
−

5
1
3
5
4

3
.9

7
×

1
0
−

5
1
7
7
6

3
.9

7
×

1
0
−

5
8
3
6

3
.9

7
×

1
0
−

5
1
0
3
4

7
.1

9
×

1
0
−

5
4
1
1

7
.1

9
×

1
0
−

5
8
3
3

4
9

9
.3

5
×

1
0
−

5
3
3
9
4

9
.3

5
×

1
0
−

5
9
2
4
4

9
.1

1
×

1
0
−

6
3
3
6
6

9
.1

1
×

1
0
−

6
7
6
8
8

7
.7

6
×

1
0
−

6
1
8
0
9

7
.7

6
×

1
0
−

5
8
1
3
3

5
0

−
4
9
.9

9
7
8
8

1
3
1
2

−
4
9
.9

9
7
8
8

1
6
6
2

−
4
9
.9

9
5
1
2

1
1
3
8

−
4
9
.9

9
5
1
2

1
5
0
6

−
4
9
.9

9
5
2
5

8
7
3
1

−
4
9
.9

9
5
2
5

5
6
9
3

5
1

−
2
0
9
.9

8
7
7
9

3
1
1
4

−
2
0
9
.9

8
7
7
9

1
1
8
7
8

−
2
0
9
.9

8
0
0
7

2
4
7
1
6

−
2
0
9
.9

8
0
0
7

3
0
1
0
0

−
2
0
9
.9

2
6
4
4

>
5
0
0
0
0
0

−
2
0
9
.9

8
0
8
5

9
0
3
7
5

5
2

2
.8

8
×

1
0
−

5
1
5
6

2
.8

8
×

1
0
−

5
1
6
2

2
.8

8
×

1
0
−

5
3
3
8

2
.8

8
×

1
0
−

5
5
0
2

7
.9

5
×

1
0
−

5
2
0
9

7
.9

5
×

1
0
−

5
2
3
7

5
3

6
.4

3
×

1
0
−

5
3
8
1
0

6
.4

3
×

1
0
−

5
4
0
6
0

6
.4

4
×

1
0
−

5
2
7
3
6
4

6
.4

4
×

1
0
−

5
2
0
9
7
4

0
.1

1
9
2
1

>
5
0
0
0
0
0

9
.7

1
×

1
0
−

5
3
1
6
8
2
7

5
4

2
.6

0
7
2
8
6

>
5
0
0
0
0
0

2
.6

0
7
2
8
6

>
5
0
0
0
0
0

9
.4

1
1
3
3

>
5
0
0
0
0
0

9
.4

1
1
3
3

>
5
0
0
0
0
0

1
6
.4

7
7
0
3

>
5
0
0
0
0
0

2
8
.9

6
3
9
4

>
5
0
0
0
0
0

A
v
e
r
a
g
e

3
0
8
4
4
.2

9
6

3
7
0
7
2
.0

3
7
1

3
7
2
8
3
.8

5
4
4
5
2
0
.5

2
1
2
1
4
8
4
.1

9
9
8
6
7
7
.7

0
M

e
d
ia

n
8
0
8
.0

0
1
6
8
1
.0

0
7
8
9
.0

0
1
1
9
0
.0

0
1
7
5
2
.0

0
3
8
1
0
.0

0

gorithm with bilevel partition. Journal of Global
Optimization 60, 3 (2014), 483–499.

[22] Liu, Q., Zeng, J., and Yang, G. Mrdirect: a
multilevel robust direct algorithm for global opti-

144



MENDEL — Soft Computing Journal, Volume 29, No. ,  2023, Brno, Czech RepublicX

Guessoum D iagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling Scheme

mization problems. Journal of Global Optimiza-
tion 62, 2 (2015), 205–227.

[23] Liuzzi, G., Lucidi, S., and Piccialli, V. A
direct-based approach exploiting local minimiza-
tions for the solution of large-scale global opti-
mization problems. Computational Optimization
and Applications 45 (2010), 353–375.

[24] Liuzzi, G., Lucidi, S., and Piccialli, V.
A partition-based global optimization algorithm.
Journal of Global Optimization 48 (2010), 113–
128.

[25] Liuzzi, G., Lucidi, S., and Piccialli, V. Ex-
ploiting derivative-free local searches in direct-
type algorithms for global optimization. Compu-
tational Optimization and Applications 65 (2016),
449–475.

[26] Ma, K., Rios, L. M., Bhosekar, A., Sahini-
dis, N. V., and Rajagopalan, S. Branch-and-
model: a derivative-free global optimization algo-
rithm. Computational Optimization and Applica-
tions 85, 2 (2023), 337–367.
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global optimization, vol. 1. Springer, 2014.
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