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Abstract
We deal with fractional mean field backward stochastic differential equations with
hurst parameter H ∈ ( 12 , 1) when the coefficient f satisfy a stochastic Lipschitz
conditions, we prove the existence and uniqueness of solution and provide a com-
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tion.
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1 Introduction

Fractional Brownian motion (fBm) with Hurst pa-
rameter H ∈ (0, 1) is a zero mean Gaussian process
BH = {BHt , t ≥ 0} with the covariance function

E
(
BHs B

H
t

)
=

1

2

(
t2H + s2H − |t− s|2H

)
.

For H = 1
2 , the process BH is a classical Brownian

motion. This process is a self-similar, i.e. BH at has
the same law as BHat for any a > 0. In the case H > 1

2 ,
the process BH exhibits long range dependence. These
properties make this process a useful driving noise in
models arising in finance, physics, telecommunication
networks and other fields. However, since BH with
H > 1

2 is not a semimartingale, we cannot use the
classical theory of stochastic calculus to define the frac-
tional stochastic integral. Essentially, two different
types of integrals with respect to fBm have been de-
fined and developed. The first one is the pathwise Rie-
mann Stieltjes integral which exists if the integrand
has a continuous paths of order α > 1−H (see Young,
[15]). This integral has the properties of Stratonovich
integral, which leads to difficulties in the applications.
The second one, introduced in [5] is the divergence op-
erator (Skorokhod integral), defined as the adjoint of
the derivative operator in the framework of the Malli-
avin calculus. Since this stochastic integral satisfies the
zero mean property and it can be expressed as the limit
of Riemann sums defined using Wick products, it was
later developed by many authors.
Backward stochastic differential equations (BSDEs

in short) driven by Brownian motion were introduced
by Bismut [2] for the linear case. In 1990, the non-
linear backward stochastic differential equations were
introduced by Pardoux and Peng [12]. Since then,
these pioneer works are extensively used in many fields

like mathematical finance [6], stochastic optimal con-
trol and stochastic games [8]. At the same time, for
better applications, BSDE itself has been developed
into many different branches. For example, Buckdahn
et al.[3, 4] introduced the so-called mean-field BSDEs
(MF-BSDEs), owing to the fact that mathematical
mean-field approaches have important applications in
many domains, such as economics, physics and game
theory.

BSDE driven by fractional Brownian motion were
introduced by Bender [1] for the linear case. The non-
linear BSDEs with respect to fBm were first studied by
Hu [7], Hu and Peng [9], they obtained the existence
and uniqueness of the solution but with some restric-
tive assumption. Then Maticiuc and Nie [11] improved
their result and omitted this assumption. They also
developed a theory of backward stochastic variational
inequalities, i.e. they proved an existence and unique-
ness of the solution of reflected BSDEs driven by fBm.

In this paper we study the nonlinear dynamics sys-
tems governed by the mean field BSDEs driven by fBm
with Hurst parameter H > 1

2 . First, we establish exis-
tence and uniqueness of solutions of such an equation
under stochastic Lipschitzian condition and establish
a comparison theorem. Also by the method developed
in [10], we prove that kind of equation has a minimal
solution under continuous and stochastic linear growth
conditions.

The organization of our paper is as follows: The ex-
istence and uniqueness result for the solution of frac-
tional mean-field backward SDE under stochastic Lip-
schitz condition and comparison theorem are given in
section 2. Finally, section 3 is devoted to the existence
of minimal solution for fractional mean-field BSDE un-
der continuous and stochastic linear growth.
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2 Fractional Mean-Field Backward SDE

In this section, we recall the existence and unique-
ness result and the comparison theorem for fractional
mean-field BSDEs under stochastic Lipschitz condi-
tions.

2.1 Definitions and Notations

For a fixed real t ∈ [0, T ] and suppose that
BH = {BHt , t ≥ 0} is a one-dimensional fBm defined
on (Ω,F ,P) with Hurst parameter 1

2 < H < 1 and
F =(Ft)0≤t≤T is the natural filtration generated by

BH . Assume that

• η0 is a given constant.

• b, σ : [0, T ] → R are continuous determinis-
tic functions, σ is differentiable and such that
σ (t) ̸= 0 ∀t ∈ [0, T ] ,

note that, since
||σ||2t = H (2H − 1)

∫ t
0

∫ t
0
|u− v|2H−2

σ (u)σ (v) dudv,

we have d
dt

(
||σ||2t

)
= σ (t) σ̂ (t) ≥ 0, where

σ̂ (t) =
∫ t
0
ϕ (t− v)σ (v) dv.

Let
(
Ω̄, F̄ , P̄

)
= (Ω× Ω,Ft⊗F t,P⊗P) be the

(non-completed) product of (Ω,F ,P) with itself.
We denote the filtration of this product space by
F̄ =

{
F̄t = Ft⊗F t, 0 ≤ t ≤ T

}
.

A random variable ξ ∈ L0 (Ω,F ,P;Rn) originally de-
fined on Ω is extended canonically to
Ω̄ : ξ́ (ώ, ω) = ξ (ώ) , (ώ, ω) ∈ Ω̄ = Ω× Ω.
For every θ ∈ L1

(
Ω̄, F̄ , P̄

)
, the variable θ (·, ω) : Ω →

R belongs to L1
(
Ω̄, F̄ , P̄

)
, P (dω)− a.s, . We denote its

expectation by E′ (θ (·, ω)) =
∫
Ω
θ (ώ, ω)P (dώ) .

Notice that
E′ (θ) = E′ (θ (·, ω)) ∈ L1 (Ω,F ,P) ,
and
E (θ) =

∫
Ω̄
θdP̄ =

∫
Ω
E′ (θ (·, ω))P (dω) = E (E′ (θ)) .

Let ηt be a solution of the following SDE with respect
to fractional Brownian motion{

dηt = b (t) dt+ σ (t) dBHt ,
η0 = x0.

(1)

Let f : Ω×[0, T ]×R5 7−→ R be measurable functions.
Now we consider the following mean field backward

SDE with respect to fBm:{
dYt = −E′

(
f(t, ηt, Yt, Zt, Ýt, Źt)

)
dt+ ZtdB

H
t ,

YT = ξ
(2)

Before giving the definition of solutions of BSDE (2),
we introduce for a fixed δ > 0 the following sets:

• L2 (δ,FT ,R) is the space of R-valued and FT -
measurable random variables such that

E
(
eδA(T ) |ξ|2

)
<∞.

• C1,2
pol ([0, T ]× R) is the space of all C1,2-functions

over [0, T ] × R, which together with their deriva-
tives are of polynomial growth.

• V[0,T ] =
{
Y = ψ (·, η) ; ψ ∈ C1,2

pol ([0, T ]× R)
}
,

dψ
dt is bounded, t ∈ [0, T ] .

• ṼH,a[0,T ] and ṼH[0,T ] denote the completion of V[0,T ]

under the following norm, respectively:

||Y ||av
△
=

(
E
∫ T

0

a2 (t) t2H−1eδA(t) |Yt|2 dt

) 1
2

,

||Z||v
△
=

(
E
∫ T

0

t2H−1eδA(t) |Zt|2 dt

) 1
2

,

where δ > 0 is a constant. It is easy to see that
ṼH[0,T ] ⊂ ṼH,a[0,T ] ⊂ L2 (0, T,R).

Definition. A solution of equation (2) is a pair of pro-

cesses (Y, Z) which belongs to the space Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ]

and satisfies (2) .

The setting of our problem is to find a pair of pro-

cesses (Y·, Z·) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ] satisfying the BSDE

(2). In the following, we will prove the existence and
uniqueness of Eq. (2) .

2.2 Fractional Mean-Field BSDE with Stochastic
Lipschitz Coefficients.

Assume the coefficient f : Ω × [0, T ] × R5 → R
and the terminal value ξ : Ω → R satisfy the following
assumptions, for δ > 0:

We say that the coefficient f satisfies assumptions
(H1) if the following holds:

(H1.1) There exist two non-negative processes
{α (t)}0≤t≤T and {β (t)}0≤t≤T such that:

1. For any 0 ≤ t ≤ T , α (t) and β (t) are Ft-
measurable.

2. For all 0 ≤ t ≤ T x ∈ R, (y, ý) ∈ R2,
(
ỹ, ỹ

′
)
∈ R2,

(z, ź) ∈ R2 and
(
z̃, z̃

′
)
∈ R2, we have

∣∣∣f(t, ω, x, y, z, ỹ, z̃)− f(t, ω, x, ý, ź, ỹ
′
, z̃

′
)
∣∣∣

≤ α (t)
(
|y − ý|+

∣∣∣ỹ − ỹ
′
∣∣∣)+ β (t)

(
|z − ź|+

∣∣∣z̃ − z̃
′
∣∣∣) .

(H1.2) For all 0 ≤ t ≤ T , a2 (t) = α (t) + β2 (t) > 0,

and A (t) =
∫ t
0
a2 (s) ds <∞.

(H1.3) The integrability condition holds:

E

(∫ T

0

eδA(t) |f(t, ω, x, 0, 0, 0, 0)|
2

a2 (t)
dt

)
<∞.

(H1.4) ξ ∈ L2 (δ,FT ,R).
To solve equation (2), we investigate first the case,

where the generator does not depend on the unknown
processes Y and Z. Namely, we consider the stochastic
equation

Yt = ξ+

∫ T

t

E′ (f(s, ηs)) ds−
∫ T

t

ZsdB
H
s , 0 ≤ t ≤ T, (3)

where f(t, ω, ηt) ∈ L2 (δ,Ft,R) satisfies the following
integrability condition:

(H1.3)
′ E
(∫ T

0
eδA(t) |f(t,ω,ηt)|2

a2(t) dt
)
<∞.
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Proposition. For any δ > 0, there exists a unique

solution (Y,Z) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ] to equation (3). More-

over, there exists a positive constant Cδ,M depending
on δ and M such that for any 0 ≤ t ≤ T,

EeδA(t) |Yt|2 + E
∫ T

t

eδA(s)a2 (s) |Ys|2

+E
∫ T

t

eδA(s)s2H−1 |Zs|2 ds

≤ Cδ,Mθ (ξ, t, T ) , (4)

where
θ (ξ, t, T ) = E

(
eδA(T ) |ξ|2 + 2

δ

∫ T
t
eδA(s) |f(s,ηs)|2

a2(s) ds
)
.

Proof. Note that by [9], the stochastic equation (3)
admits a unique solution

(Y,Z) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ].

It remains to show that Y ∈ Ṽ
1
2 ,a

[0,T ].

Itô’s formula applied to equation (3) yields for
0 ≤ t ≤ T and δ > 0,

eδA(t) |Yt|2 + δ

∫ T

t

a2 (s) eδA(s) |Ys|2 ds

= eδA(T ) |ξ|2 + 2

∫ T

t

eδA(s)YsE′ (f(s, ηs)) ds

−2

∫ T

t

eδA(s)YsZsdB
H
s − 2

∫ T

t

eδA(s)DH
s YsZsds.

Taking expectation, we get

E

(
eδA(t) |Yt|2 + δ

∫ T

t

a2 (s) eδA(s) |Ys|2 ds

)

= E

(
eδA(T ) |ξ|2 + 2

∫ T

t

eδA(s)Ysf(s, ηs)ds

)

−2E

(∫ T

t

eδA(s)DH
s YsZsds

)
. (5)

Then using the inequality 2ab ≤ a2ϵ+ b2

ϵ , we have

2Ysf(s, ηs) ≤
δ

2
a2 (s) |Ys|2 +

2

δ

|f(s, ηs)|2

a2 (s)
.

It is known (see for example Hu and Peng, [9], Maticiuc
and Nie, [11]) that DH

t Yt = (σ̂ (t) /σ (t))Zt.
Moreover by Remark 6 in Maticiuc and Nie [11], there
exists M > 0 such that for all t ∈ [0, T ] ,
t2H−1/M ≤ σ̂ (t) /σ (t) ≤Mt2H−1.

EeδA(t) |Yt|2 +
δ

2
E
∫ T

t

a2 (s) eδA(s) |Ys|2 ds

+
2

M
E
∫ T

t

eδA(s)s2H−1 |Zs|2 ds

≤ θ (ξ, t, T ) . (6)

Choosing δ, M > 2, we deduce from (6),

EeδA(t) |Yt|2 + E
∫ T

t

a2 (s) eδA(s) |Ys|2 ds

+E
∫ T

t

eδA(s)s2H−1 |Zs|2 ds

≤ Cδ,Mθ (ξ, t, T ) .

This implies in particular that (Y,Z) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ]

and (4) follows.

Theorem. Assume that assumptions (H1) hold.
Then, for δ sufficiently large, the fractional MF-BSDE

(2) has a unique solution (Y,Z) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ].

Proof. Existence part: We consider the sequence
(Y n, Zn)n≥0 defined by{

−dY n+1
t = E′

(
f(t, ηt, Y

n
t , Zn

t , Ý
n
t , Źn

t )
)
dt− Zn+1

t dBH
t

Y n+1
T = ξ, 0 ≤ t ≤ T.

(7)

Since for a fixed n ∈ N , the coefficient f of the frac-
tional MF-BSDE (3.7) does not depend on the solu-
tion

(
Y n+1, Zn+1

)
it follows from the previous propo-

sition that the sequence (Y n, Zn)n≥0 is well defined in

Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ].

Our strategy consists of proving that (Y n, Zn)n≥0 is
a Cauchy sequence. To this, let n ≥ 1 and define for a
process π ∈ {Y,Z}, ∆πn+1 = πn+1 − πn and

∆fn+1(s, ηs) = E′f(s, ηs, Y
n+1
s , Zn+1

s , Ý n+1
s , Źn+1

s )

−E′f(s, ηs, Y
n
s , Z

n
s , Ý

n
s , Ź

n
s ).

It is readily seen that the pair
(
Y n+1
t , Zn+1

t

)
t∈[0,T ]

solves the following fractional MF-BSDE:

∆Y n+1
t =

∫ T

t

∆fn(s, ηs)ds−
∫ T

t

∆Zn+1
s dBHs , 0 ≤ t ≤ T.

(8)

Itô’s formula, applied to eδA(t)
∣∣∆Y n+1

t

∣∣2, yields for
0 ≤ t ≤ T and δ > 0,

EeδA(t)
∣∣∆Y n+1

t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣∆Y n+1

s

∣∣2 ds
+2E

∫ T

t

eδA(s)DH
s ∆Y n+1

s ∆Zn+1
s ds

= 2E
∫ T

t

eδA(s)∆Y n+1
s ∆fn(s, ηs)ds.

It is known (see for example Hu and Peng, [9], Maticiuc
and Nie, [11]) that DH

t ∆Y n+1
t = (σ̂ (t) /σ (t))∆Zn+1

t .
Moreover by Remark 6 in Maticiuc and Nie [11], there
exists M > 0 such that for all t ∈ [0, T ] ,
t2H−1/M ≤ σ̂ (t) /σ (t) ≤Mt2H−1.

EeδA(t)
∣∣∆Y n+1

t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣∆Y n+1

s

∣∣2 ds
+

2

M
E
∫ T

t

s2H−1eδA(s) |∆Zn
s |2 ds (9)

= 2E
∫ T

t

eδA(s)∆Y n+1
s ∆fn(s, ηs)ds.
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By assumption (H1.1) (2), we deduce that

2E
∫ T

t

eδA(s)∆Y n+1
s ∆fn(s, ηs)ds

≤ 2E
∫ T

t

eδA(s)
∣∣∆Y n+1

s

∣∣ |∆fn(s, ηs)| ds,

≤ 2E
∫ T

t

eδA(s)α (s)
∣∣∆Y n+1

s

∣∣ |∆Y n
s | ds

+2E
∫ T

t

eδA(s)α (s)
∣∣∆Y n+1

s

∣∣E (|∆Y n
s |) ds (10)

+2E
∫ T

t

eδA(s)β (s)
∣∣∆Y n+1

s

∣∣ |∆Zn
s | ds

+2E
∫ T

t

eδA(s)β (s)
∣∣∆Y n+1

s

∣∣E (|∆Zn
s |) ds.

Therefore by choosing δ ≥ 1, using Hölder’s inequality
and Jensen’s inequality we get

EeδA(t)
∣∣∆Y n+1

t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣∆Y n+1

s

∣∣2 ds
+

2

M
E
∫ T

t

s2H−1eδA(s) |∆Zn
s |2 ds

≤ 4E
∫ T

t

a2 (s) {
(
eδA(s)E

∣∣∆Y n+1
s

∣∣2) 1
2

×
(
eδA(s)E (|∆Y n

s |)2
) 1

2 }ds (11)

+4E
∫ T

t

(
β2 (s) eδA(s)E

∣∣∆Y n+1
s

∣∣2) 1
2

×
(
eδA(s)E (|∆Zn

s |)2
) 1

2
ds.

Denote x (s) =
(
eδA(s)E

∣∣∆Y n+1
s

∣∣2) 1
2

, Then from

(3.10)

x (t)
2 ≤ 4

∫ T

t

a2 (s)x (s)
(
eδA(s)E (|∆Y ns |)2

) 1
2

ds

+4

∫ T

t

β (s)x (s)
(
eδA(s)E (|∆Zns |)

2
) 1

2

ds.

Using Lemma 20 in Maticiuc and Nie [11] above in-
equality, it follows that

x (t) ≤ 4

∫ T

t

a2 (s)
(
eδA(s)E (|∆Y ns |)2

) 1
2

ds

+4

∫ T

t

β (s)
(
eδA(s)E (|∆Zns |)

2
) 1

2

ds.

Therefore for t ∈ [tk, T ]

x (t)
2 ≤ 32

(∫ T

t

a2 (s)
(
eδA(s)E (|∆Y ns |)2

) 1
2

ds

)2

+32

(∫ T

t

β (s)
(
eδA(s)E (|∆Zns |)

2
) 1

2

ds

)2

.

Now we compute

∫ T

tk

x (s)2 ds

≤ 32 (T − tk)

(∫ T

tk

a2 (s)
(
eδA(s)E (|∆Y n

s |)2
) 1

2
ds

)2

(12)

+32 (T − tk)

(∫ T

tk

β (s)
(
eδA(s)E (|∆Zn

s |)2
) 1

2
ds

)2

,

= : Γ.

For the term Γ in (11)

(∫ T

tk

a2 (s)
(
eδA(s)E (|∆Y n

s |)2
) 1

2
ds

)2

≤
∫ T

tk

a2 (s) ds ·
∫ T

tk

a2 (s) eδA(s)E (|∆Y n
s |)2 ds,(13)

and

(∫ T

tk

β (s)
(
eδA(s)E (|∆Zn

s |)2
) 1

2
ds

)2

=

(∫ T

tk

β (s)√
s2H−1

√
s2H−1

(
eδA(s)E (|∆Zn

s |)2
) 1

2
ds

)2

,

≤
∫ T

tk

a2 (s)

s2H−1
ds ·

∫ T

tk

s2H−1eδA(s)E (|∆Zn
s |)2 ds. (14)

Combining (12) and (13), it follows that

∫ T

tk

x (s)
2
ds

≤ F

∫ T

tk

a2 (s) eδA(s)E (|∆Y ns |)2 ds (15)

+G

∫ T

tk

s2H−1eδA(s)E (|∆Zns |)
2
ds,

where F = 32 (T − tk)
∫ T
tk
a2 (s) ds <∞

and G = 32 (T − tk)
∫ T
tk

a2(s)
s2H−1 ds <∞. And similarly

∫ T

tk

1

s2H−1
x (s)

2
ds

≤ F̃

∫ T

tk

a2 (s) eδA(s)E (|∆Y ns |)2 ds (16)

+G̃

∫ T

tk

s2H−1eδA(s)E (|∆Zns |)
2
ds,

where F̃ = 32
(
T 2−2H−t2−2H

k

2−2H

) ∫ T
tk
a2 (s) ds < ∞ and

G̃ = 32
(
T 2−2H−t2−2H

k

2−2H

) ∫ T
tk

a2(s)
s2H−1 ds <∞.

Now from (9) and (10)
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EeδA(t)
∣∣∆Y n+1

t

∣∣2
+E

∫ T

t

(
δ2 − 2

)
s2H−1 − 2

δs2H−1
a2 (s)

×eδA(s)
∣∣∆Y n+1

s

∣∣2 ds (17)

+
2

M
E

(∫ T

t

s2H−1eδA(s)
∣∣∆Zn+1

s

∣∣2 ds)

≤ 2δE
∫ T

t

eδA(s)

×
(
a2 (s) |∆Y ns |2 ds+ s2H−1 |∆Zns |

2
)
ds.

Choosing δ > 0 such that
(
δ − 2

δ −
2

δs2H−1

)
> 1 for any

t ≤ s ≤ T and using the inequality (14), and note that
M > 2, we have

E
∫ T

tk

eδA(s)
(
a2 (s)

∣∣∆Y n+1
s

∣∣2 + s2H−1
∣∣∆Zn+1

s

∣∣2) ds

≤ δMFE
∫ T

tk

a2 (s) eδA(s)E (|∆Y n
s |)2 ds

+δ (MG+ 2)E
∫ T

tk

s2H−1eδA(s)E (|∆Zn
s |)2 ds.

Now choosing δ > 0 and taking k large enough such
that δMF ≤ 1

4 and δ (MG+ 2) ≤ 1
4 , we deduce

E
∫ T

tk

eδA(s)a2 (s)
∣∣∆Y n+1

s

∣∣2 ds
+E

∫ T

tk

eδA(s)s2H−1
∣∣∆Zn+1

s

∣∣2 ds
≤ 1

2
E
∫ T

tk

eδA(s)a2 (s)E (|∆Y ns |)2 ds

+
1

2
E
∫ T

tk

eδA(s)s2H−1E (|∆Zns |)
2
ds.

As a consequence, we deduce that (Y n, Zn)n≥0 is a

Cauchy sequence in Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ]. Then there ex-

ists a pair (Y,Z) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ] being a limit of

(Y n, Zn)n≥1, i.e.

E
∫ T

0

a2 (s) eδA(s) |Y ns − Ys|2 ds

+E
∫ T

0

s2H−1eδA(s) |Zns − Zs|2 ds

→ 0, as n→ ∞.

It remains to show that the pair (Y,Z) satisfies equa-
tion (2) on the interval [0, T ]. We have for any
t ∈ [tk, T ],

Y n+1
t − ξ −

∫ T

t

f(s, ηs, Y
n
s , Z

n
s , Ý

n
s , Ź

n
s )ds

→
n→∞

Yt − ξ −
∫ T

t

f(s, ηs, Ys, Zs, Ýs, Źs)ds,

in L2 (Ω,F ,P). And Znt 1[t,T ] → Zt1[t,T ] in
L2 (Ω,F ,H). Arguing as in the proof of Theo-
rem 23 in Maticiuc and Nie [11] we show that (Y,Z)

satisfies (2) on [tk, T ]. The next step is to solve the
equation on [tk−1, tk]. With the same arguments,
repeating the above technique we obtain a uniqueness
of the solution of MF-BSDE with respect to fBm on
the whole interval [0, T ] .
Uniqueness part: Let

(
Y 1
· , Z

1
·
)
and

(
Y 2
· , Z

2
·
)
two

solutions of fractional MF-BSDEs (2), then by Itô’s

formula applied to eδA(t)
∣∣Y 1
t − Y 2

t

∣∣2 it follows that,
∀t ∈ [0, T ] ,

EeδA(t)
∣∣Y 1

t − Y 2
t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣Y 1

s − Y 2
s

∣∣2 ds
= 2E

∫ T

t

eδA(s) (Y 1
s − Y 2

s

)
×
(
f(s, ηs, Y

1
s , Z

1
s , Ý

1
s , Ź

1
s )− f(s, ηs, Y

2
s , Z

2
s , Ý

2
s , Ź

2
s )
)
ds

−2E
(∫ T

t

eδA(s)DH
s

(
Y 1
s − Y 2

s

) (
Z1

s − Z2
s

)
ds

)
,

then, we can write

EeδA(t)
∣∣Y 1

t − Y 2
t

∣∣2
+E

∫ T

t

(
δ − 4− 2δM

s2H−1

)
a2 (s) eδA(s)

∣∣Y 1
s − Y 2

s

∣∣2 ds
+
2δ − 2

δM
E
(∫ T

t

eδA(s)s2H−1
∣∣Z1

s − Z2
s

∣∣2 ds)
≤ 0,

which can be chosen δ, M such that δ− 4− 2δM
s2H−1 > 0

for any t ≤ s ≤ T and 2δ−2
δM > 0. Thus, we deduce that

EeδA(t)
∣∣Y 1

t − Y 2
t

∣∣2
+E

∫ T

t

eδA(s)
(
a2 (s)

∣∣Y 1
s − Y 2

s

∣∣2 + s2H−1
∣∣Z1

s − Z2
s

∣∣2) ds

≤ 0.

This implies Y 1
t = Y 2

t and Z1
s = Z2

s . The result
follows.

2.3 Comparison Theorem

In this subsection we study a comparison theorem
for the fractional MF-BSDEs of the following form:{

−dY it = E′
(
f i(t, ηt, Y

i
t , Z

i
t , Ý

i
t , Ź

i
t)
)
dt− ZitdB

H
t

Y iT = ξi, 0 ≤ t ≤ T.
(18)

where for any i ∈ {1, 2}, f i : Ω× [0, T ]× R5 → R.
We assume in addition that

(H1.5)

 ξ1 ≤ ξ2,
f1 (s, η, y, z, ý, ź) ≤ f2 (s, η, y, z, ý, ź) ,
∀ (s, η, y, z, ý, ź) ∈ [0, T ]× R5.

We have the following theorem:

Theorem. Suppose that
(
ξ1, f1

)
and

(
ξ2, f2

)
satisfy

(H1.1)−(H1.5).
If
(
Y is , Z

i
s

)
, i = 1, 2 are solutions to Eq. (18), then

we have

∀t ∈ [0, T ] , Y 1 ≤ Y 2, P− a.s.
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Proof. Let us define ∆Yt = Y 2
t − Y 1

t , ∆Zt = Z2
t − Z1

t ,
∆Ýt = Ý 2

t − Ý 1
t , ∆Źt = Ź2

t − Ź1
t , ∆ξ = ξ2 − ξ1 and

∆f
(
t, ηt,∆Yt,∆Zt,∆Ýt,∆Źt

)
= E

′
f2
(
t, ηt, Y

2
t , Z

2
t , Ý

2
t , Ź

2
t

)
−E

′
f1(t, ηt, Y

1
t , Z

1
t , Ý

1
t , Ź

1
t ).

It follows that (∆Yt,∆Zt)t∈[0,T ] satisfies the fractional
MF-BSDE for any 0 ≤ t ≤ T

∆Yt

= ∆ξ +

∫ T

t

∆f
(
s, ηs,∆Ys,∆Zs,∆Ýs,∆Źs

)
ds

−
∫ T

t

∆ZsdB
H
s .

Applying Itô’s formula to eδA(t)
∣∣∆Y −

t

∣∣2, we obtain

EeδA(t)
∣∣∆Y −

t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣∆Y −

s

∣∣2 ds
+

2

M
E
∫ T

t

1{∆Ys<0}e
δA(s)s2H−1 |∆Zs|2 ds

= E
(
eδA(T )∆ξ−

)
− 2E

∫ T

t

1{∆Ys<0}e
δA(s)∆Y −

s ×

∆f
(
s, ηs,∆Ys,∆Zs,∆Ýs,∆Źs

)
ds.

Since
E′
f2
(
t, ηt, Y

2
t , Z

2
t , Ý

2
t , Ź

2
t

)
≥ E′

f1(t, ηt, Y
2
t , Z

2
t , Ý

2
t , Ź

2
t )

and ∆ξ = ξ1 − ξ2 ≥ 0, we have

EeδA(t)
∣∣∆Y −

t

∣∣2 + δE
∫ T

t

a2 (s) eδA(s)
∣∣∆Y −

s

∣∣2 ds
+

2

M
E
∫ T

t

1{∆Ys<0}e
δA(s)s2H−1 |∆Zs|2 ds

≤ 2E
∫ T

t

1{∆Ys<0}e
δA(s)∆Y −

s

×(E
′
f1
(
s, ηs, Y

2
s , Z

2
s , Ý

2
s , Ź

2
s

)
−E

′
f1(s, ηs, Y

1
s , Z

1
s , Ý

1
s , Ź

1
s ))ds.

From (H1.1) , (H1.2) and Young’s inequality, we have

∆Y −
s E

′(
f1

(
s, ηs, Y

2
s , Z

2
s , Ý

2
s , Ź

2
s

)
−f1(s, ηs, Y

1
s , Z

1
s , Ý

1
s , Ź

1
s )
)

≤ 1

2

(
4 +

4M

s2H−1

)
a2 (s)

∣∣∆Y −
s

∣∣2 + s2H−1

2M
|∆Zs|2 .

Finally, it follows that

E
(
eδA(t)

∣∣∆Y −
t

∣∣2 + ∫ T

t

(
δ − 4− 4M

s2H−1

)
a2 (s) eδA(s)

∣∣∆Y −
s

∣∣2 ds)
+ 1

M
E
(∫ T

t
1{∆Ys<0}e

δA(s)s2H−1 |∆Zs|2 ds
)
≤ 0

Therefore, choosing δ > 0 and M > 0, such that(
δ − 4− 4M

s2H−1

)
≥ 0, we derive that ∆Y −

t = 0 P− a.s.
for all t ∈ [0, T ], which implies that ∆Yt = Y 2

t −Y 1
t ≥ 0

P− a.s. for all t ∈ [0, T ].

3 Fractional MF-BSDE with Continuous
and Stochastic Linear Growth Coeffi-
cients.

The objective of this section is to prove an exis-
tence theorem for MF-BSDEs (2) with Hurst param-
eter H > 1

2 when the coefficient f is continuous with
stochastic linear growth. More precisely, the coefficient
f : Ω × [0, T ] × R4 → R is measurable and the termi-
nal value ξ : Ω → R is FT−measurable satisfying the
following assumptions for δ > 0.
(A1) The following hold:

i) For fixed ω and t, f(t, ω, x, ·, ·, ·) is continuous.

ii) For all (t, ω, x, y, z, ý) ∈ [0, T ]× Ω× R4

|f(t, ω, x, y, z, ý)| ≤ φ (t)+r (t) (|x|+ |y|+ |ý|)+θ (t) (|z|) .

where φ, r and θ are three nonnegative processes
such that for a.e. t ∈ [0, T ], φ (t) , r (t) and θ (t)
Ft−measurable.

iii) For all (t, ω, x, y, z, ý) ∈ [0, T ] × Ω × R4,
f (t, ω, x, y, z, ý) is Ft−measurable.

(A2) For any t ∈ [0, T ],

a2 (t) = r (t) + θ2 (t) > 0, and

A (t) =

∫ t

0

a2 (s) ds <∞.

(A3) One has

EeδA(T ) |ξ|2 + E
∫ T

0

eδA(t)

(
|φ (t)|2

a2 (t)
+ a2 (t) |ηt|2

)
dt < ∞.

To reach our objective, we first give the following use-
ful approximation lemma, which generalizes the corre-
sponding result of Lepeltier and San Martin [10].

Lemma. Let f : Ω× [0, T ]×R4 → R be a measurable
function such that:

For a.s. every (t, ω) ∈ [0, T ]× Ω, f (t, ω, x, y, z, ý) is
a continuous.

For every (t, ω, x, y, z, ý) ∈ [0, T ]× Ω× R4

|f (t, ω, x, y, z, ý)|
≤ φ (t) + r (t) (|x|+ |y|+ |ý|) + θ (t) |z| .

where φ, r and θ are three nonnegative processes
such that for a.e. t ∈ [0, T ], φ (t) , r (t) and θ (t)
Ft−measurable.

Then exists the sequence of fonction fn
fn (t, ω, x, y, z, ý)

= inf
(ỹ,z̃,ỹ′ ,z̃′)∈Q

(f
(
t, ω, x, ỹ, z̃, ỹ

′
)

+n
(
r (t)

(
|y − ỹ|+

∣∣∣ý − ỹ
′
∣∣∣)+ θ (t) |z − z̃|

)
),

are well defined for n ≥ 1 and satisfy the following
conditions

(i) For all n ≥ 1, (t, ω, x, y, z, ý) ∈ [0, T ]× Ω× R5,

|fn (t, ω, x, y, z, ý)|
≤ φ (t) + r (t) (|x|+ |y|+ |ý|) + θ (t) |z| .
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(ii) For any (t, ω, x, y, z, ý), fn (t, ω, x, y, z, ý) is non-
decreasing in n.
(iii) For all (t, ω, x, y, z, ý) ∈ [0, T ] × Ω × R4, if

(t, ω, x, yn, zn, ýn) → (t, ω, x, y, z, ý) , then

fn (t, ω, x, yn, zn, ýn) → f (t, ω, x, y, z, ý) .

(iv) For any n ≥ 1, (t, ω) ∈ [0, T ] × Ω, for all
(t, ω, x, y, z, ý) ∈ [0, T ]× Ω× R4 and(
t, ω, x, ỹ, z̃, ỹ

′
)
∈ [0, T ]× Ω× R4, we have∣∣∣fn (t, ω, x, y, z, ý)− fn

(
t, ω, x, ỹ, z̃, ỹ

′
)∣∣∣

≤ n
(
r (t)

(
|y − ỹ|+

∣∣∣ý − ỹ
′
∣∣∣)+ θ (t) |z − z̃|

)
.

3.1 Existence Result

Now, by the approximation method of the function
f (previous lemma) and the comparison theorem, we
establish the following existence theorem.

Theorem. Assume (A1)-(A3). Then, for δ suffi-
ciently large, the MF-BSDE (2) has a minimal solution(
Y
−
, Z
−

)
∈ Ṽ

1
2 ,a

[0,T ] × ṼH[0,T ].

Proof. We only prove that fractional MF-BSDE (2)
has a minimal solution. Since (A1) holds, it follows
from previous lemma that there exists a sequence of
stochastic Lipschitz-continuous functions fn associated
with f , which is non-decreasing in n.

Since

g (t) = φ (t) + r (t) (|x|+ |y|+ |ý|) + θ (t) |z|

is stochastic Lipschitz, the existence and uniqueness
result in the previous section implies that there exists

a unique solution (U, V ) ∈ Ṽ
1
2 ,a

[0,T ] × ṼH[0,T ] for fractional

MF-BSDEs with data(ξ, g).
Now, for any n ≥ 1, let an and An be two random

processes with positive values defined by

a2n (t) = nr (t) + n2θ2 (t) > 0, and

An (t) =

∫ t

0

a2n (s) ds <∞.

Then, in view of (A1) − (A2), an (t) and An (t) are
Ft−measurable, for a.e. t ∈ [0, T ] such that for any
n ≥ 1, 0 < a < an and A < An < n2A. Thus, it is clair

to deduce that for any n ≥ 1, Ṽ
1
2 ,an
[0,T ] ⊂ Ṽ

1
2 ,a

[0,T ].Moreover,

from (A3), (ξ, fn) satisfies the following conditions for
any n ≥ 1:

E
(
eδAn(T ) |ξ|2

)
≤ E

(
eδn

2A(T ) |ξ|2
)

< ∞,

and

E
∫ T

0

eδAn(t)
|fn(t, ω, x, 0, 0, 0)|2

a2n (t)
dt

≤
∫ T

0

eδn
2A(t) |φ (t)|2

a2 (t)
dt <∞.

Therefore, we get again from the previous section
that for every n ≥ 1 there exists a unique solution

(Y n, Zn) ∈ Ṽ
1
2 ,an
[0,T ] ×ṼH[0,T ] for fractional MF-BSDE with

data:{
−dY nt = E′

(
fn(t, ηt, Y

n
t , Z

n
t , Ý

n
t )
)
dt− Znt dB

H
t ,

Y nT = ξ, 0 ≤ t ≤ T.
(19)

Consequently, for any n ≥ 1, (Y n, Zn) ∈ Ṽ
1
2 ,a

[0,T ]×ṼH[0,T ].

On the other hand, since for fixed (t, ω, x, y, z, ý) and
all n ≥ 1,
fn (t, ω, x, y, z, ý) ≤ fn+1 (t, ω, x, y, z, ý)

≤ φ (t) + r (t) (|x|+ |y|+ |ý|) + θ (t) |z| ,

it follows from the comparison theorem that for every
n ≥ 1,

Y n ≤ Y n+1 ≤ U, dP⊗ dt− a.s. (20)

The idea of the proof is to establish that the limit of
the sequence (Y n, Zn) is a solution of the fractional
MF-BSDE (2). To this end, we will sketch the proof
in four steps.
Step 1: A priori estimates. There exists a constant
C > 0 independent of n such that

EeδA(t) |Y nt |2 + E
∫ T

t

eδA(s)a2 (s) |Y ns |2 ds

+E
∫ T

t

eδA(s)s2H−1 |Zns |
2
ds

≤ C, (21)

where C is a positive constant which may be different
from line to line.

Indeed, for any δ > 0, Itô’s formula applied to
eδA(t) |Y nt |2 provides

eδA(t) |Y nt |2

= eδA(T ) |ξ|2 + 2

∫ T

t

eδA(s)Y ns

×E′
(
fn(s, ηs, Y

n
s , Z

n
s , Ý

n
s )
)
ds

−2

∫ T

t

eδA(s)Y ns Z
n
s dB

H
s − 2

∫ T

t

eδA(s)DH
s Y

n
s Z

n
s ds

−δ
∫ T

t

eδA(s) |Y ns |2 ds.

Taking expectation, we get

EeδA(t) |Y nt |2 + δE
∫ T

t

a2 (s) eδA(s) |Y ns |2 ds

+2E
∫ T

t

eδA(s)DH
s Y

n
s Z

n
s ds

= EeδA(T ) |ξ|2 + 2E
∫ T

t

eδA(s)Y ns

×E′
(
fn(s, ηs, Y

n
s , Z

n
s , Ý

n
s )
)
ds.

It is known (see example Hu and Peng, [9], Maticiuc
and Nie, [11]) that DH

t Y
n
t = (σ̂ (t) /σ (t))Znt . More-

over by Remark 6 in Maticiuc and Nie [11], there ex-
ists M > 0 such that for all t ∈ [0, T ] , t2H−1/M ≤
σ̂ (t) /σ (t) ≤Mt2H−1.
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Then, we have

EeδA(t) |Y nt |2 + δE
∫ T

t

a2 (s) eδA(s) |Y ns |2 ds

+
2

M
E
∫ T

t

s2H−1eδA(s) |Zns |
2
ds

≤ EeδA(T ) |ξ|2 + 2E
∫ T

t

eδA(s)Y ns

×E′
(
fn(s, ηs, Y

n
s , Z

n
s , Ý

n
s )
)
ds, (22)

assumption (A2) and property (iv) from previous
lemma together with Young’s inequality imply,

2Y ns E′
(
fn(s, ηs, Y

n
s , Z

n
s , Ý

n
s )
)

≤
(
5 +

M

s2H−1

)
a2 (s) |Y ns |2

+
s2H−1

M
|Zns |

2
+

|φ (s)|2

a2 (s)
.

Therefore, for sufficiently large δ > 0, choosing δ such
that

(
δ − 5− M

s2H−1

)
> 1, we obtain for M > 1

E
∫ T

t

a2 (s) eδA(s) |Y ns |2 ds

+E
∫ T

t

s2H−1eδA(s) |Zns |
2
ds

≤ CE

(
eδA(T ) |ξ|2 +

∫ T

t

eδA(s) |φ (s)|2

a2 (s)
ds

)
< ∞.

Finally, we get

EeδA(t) |Y nt |2

+E
∫ T

0

a2 (s) eδA(s) |Y ns |2 ds

+E
∫ T

0

s2H−1eδA(s) |Zns |
2
ds

≤ CE

(
eδA(T ) |ξ|2 +

∫ T

0

eδA(s) |φ (s)|2

a2 (s)
ds

)
< ∞.

Step 2: Convergence result. From (20) and (21), there
exists a process Y n such that Y nt ↗ Yt a.s. for all
t ∈ [0, T ]. Therefore, it follows from Fatou’s lemma
together with the dominated convergence theorem that

{
E
∫ T
0
eδA(s) |Ys|2 ds ≤ C, and

limn→∞
∫ T
0
a2 (s) eδA(s) |Y ns − Ys|2 ds = 0.

(23)

Next, for all n ≥ 1, by Itô’s formula applied to

eδA(t)
∣∣Y n+1
t − Y nt

∣∣2, we get

eδA(t)
∣∣Y n+1
t − Y nt

∣∣2
= 2

∫ T

t

eδA(s)
(
Y n+1
s − Y ns

)
×(E′fn+1

(
s, ηs, Y

n+1
s , Zn+1

s , Ý n+1
s

)
−E′fn

(
s, ηs, Y

n
s , Z

n
s , Ý

n
s

)
)ds

−2

∫ T

t

eδA(s)
(
Y n+1
s − Y ns

) (
Zn+1
s − Zns

)
dBHs

−2

∫ T

t

eδA(s)DH
s

(
Y n+1
s − Y ns

) (
Zn+1
s − Zns

)
ds

−δ
∫ T

t

eδA(s)
∣∣Y n+1
s − Y ns

∣∣2 ds.
Letting t = 0, it follows from the uniform linear growth
condition on the sequence fn, (property (ii) in previous
lemma), Cauchy-Schawrtz inequality and assumption
(A2) that

E
∣∣Y n+1

0 − Y n0
∣∣2

+δE
∫ T

0

eδA(s)a2 (s)
∣∣Y n+1
s − Y ns

∣∣2 ds
+

2

M
E
∫ T

0

eδA(s)s2H−1
∣∣Zn+1
s − Zns

∣∣2 ds
≤ CE

∫ T

0

eδA(s)(
|φ (s)|2

a2 (s)

+a2 (s)
(∣∣Y n+1

s

∣∣2 + |Y ns |2 + |ηs|2
)

+
(∣∣Zn+1

s

∣∣2 + |Zns |
2
)
ds)

1
2 (24)

×

(
E
∫ T

0

eδA(s)
∣∣Y n+1
s − Y ns

∣∣2 ds) 1
2

.

Therefore, from (20) and assumption (A3), we provide
the existence of a constant C̃ > 0 independent of n
such that

E
∫ T

0

eδA(s)s2H−1
∣∣Zn+1
s − Zns

∣∣2 ds
≤ C̃

(
E
∫ T

0

eδA(s)
∣∣Y n+1
s − Y ns

∣∣2 ds) 1
2

.

Consequently, it follows from (23) that (Zn)n≥1 is

a Cauchy sequence in ṼH[0,T ]. Then there exists an

Ft−jointly measurable process Z ∈ ṼH[0,T ] such that

lim
n→∞

E
∫ T

0

eδA(s)s2H−1 |Zns − Zs|2 ds = 0.

Step 3: (Y,Z) verifies MF-BSDE driven by fBm (2).

Since (Y n, Zn) → (Y,Z) in Ṽ
1
2 ,a

[0,T ]×ṼH[0,T ], along a sub-

sequence which we still denote (Y n, Zn), we get

(Y n, Zn) → (Y, Z) dt⊗ dP a.e.,
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and there exists χ ∈ ṼH[0,T ] such that for all n ≥ 1,

|Zn| < χ dt ⊗ dP a.e. Therefore, by the previous lem-
mma, we have

fn

(
t, ηt, Y

n
t , Z

n
t , Ý

n
t

)
→ f

(
t, ηt, Yt, Zt, Ýt

)
dt⊗ dP a.e.,

Moreover, from condition (ii) in the previous lemma
and (20), we have ∣∣∣fn (t, ηt, Y nt , Znt , Ý nt )∣∣∣

≤ Σ (t) <∞ dt⊗ dP a.e.,

where

Σ (t) = φ (t) + r (t)
(∣∣Y 1

t

∣∣+ ∣∣∣Ý 1
t

∣∣∣+ |Ut|
)

+θ (t) |χt| .

Then it follows from the dominated convergence theo-
rem that

E
∫ T

t

fn

(
s, ηs, Y

n
s , Z

n
s , Ý

n
s

)
ds

→
n→∞

E
∫ T

t

f
(
s, ηs, Ys, Zs, Ýs

)
ds.

Finally, passing to the limit on both sides of fractional
MF-BSDE (19), we get that (Y, Z) is a solution of MF-
BSDE (2) .

Step 4: Minimal solution. Let
(
Ỹ , Z̃

)
∈ Ṽ

1
2 ,a

[0,T ]×ṼH[0,T ]

be any solution of fractional MF-BSDE (2) and let us
consider for any n ≥ 1 the fractional MF-BSDE (19)
with its unique solution (Y n, Zn), which converges to
(Y,Z). Since fn ≤ f for all n ≥ 1, we get by virtue
of the comparison theorem that Y n ≤ Ỹ for all n ≥ 1.
Therefore, Y ≤ Ỹ .
That proves that (Y,Z) is the minimal solution for

fractional MF-BSDE (2).

4 Conclusion

In the first part of this work, we have studied mean
field backward stochastic differential equations driven
by fBm with Hurst parameter H > 1

2 under stochastic
Lipschitz condition. In the second part of the paper we
establish the existence of minimal solution to the mean
field backward stochastic differential equations driven
by fBm with Hurst parameter H > 1

2 under continuous
and stochastic linear growth condition. Motivated by
the works of [3, 4, 9, 10, 14, 13], we have proved an
existence result to this kind of equations, in which the
coefficient f is assumed to be continuous and stochas-
tic linear growth condition, more precisely, we have
treated the stochastic Lipschitz case. So our method
in continuous and stochastic linear growth condition
case is similar techniques developed in [10] with some
suitable changes due to the difference between the pro-
cesses and the spaces. We note that pretty much of the
technical difficulties coming from the fractional brown-
ien motion, since BH with H > 1

2 is not a semimartin-
gale, we cannot use the classical theory of stochastic
calculus.
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