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Abstract
This paper is a brief guide aimed at evaluating the time complexity of metaheuristic
algorithms both mathematically and empirically. Starting with the mathematical
foundational principles of time complexity analysis, key notations and fundamen-
tal concepts necessary for computing the time efficiency of a metaheuristic are
introduced. The paper then applies these principles on three well-known meta-
heuristics, i.e. differential evolution, harmony search and the firefly algorithm.
A procedure for the empirical analysis of metaheuristics’ time efficiency is then
presented. The procedure is then used to empirically analyze the computational
cost of the three aforementioned metaheuristics. The pros and cons of the two
approaches, i.e. mathematical and empirical analysis, are discussed.
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1 Introduction

Metaheuristics are general problem-solving tech-
niques used to find good solutions for complex opti-
mization problems where classical, calculus-based al-
gorithms might be impractical or infeasible [2, 3, 13].
One example of the optimization problems solved by

metaheuristic algorithms is the following:

min
x∈RD,Lj≤xj≤Uj ;∀j∈{1,2,...,D}

f(x), (1)

where f(x) is the objective function to be minimized,
x is a candidate solution in RD, and Lj and Uj are the
lower and upper bounds, respectively, for the jth com-
ponent of x. The objective is to find x that minimizes
f(x) while satisfying the boundary constraints.
Metaheuristics have the following advantages:

1. They can be applied to a wide range of optimiza-
tion problems.

2. They often find reasonable solutions within an ac-
ceptable amount of time.

3. They can be used to solve multimodal problems.

4. They are often easy to implement.

5. They do not require optimization problems to be
convex and do not make use of derivatives.

Notwithstanding their advantages, they have some
major drawbacks too:

1. They do not guarantee finding an optimal solution.

2. Their parameters need fine tuning to the specific
problem at hand.

3. Sometimes they take a long time to converge to a
good solution.

There are many metaheuristic algorithms for solving
optimization problems in the literature. One way to
compare them is by the quality of their solutions to the
optimization problem at hand. Another way is by com-
paring their efficiency. The latter is the main focus of
this paper. The computational cost of metaheuristics
can be compared before implementing them, i.e. as al-
gorithms, or after implementing them, i.e. as program
code. In the case of after implementing the algorithms,
researchers need first to implement their algorithm in a
programming language (typically Matlab or Python),
then run it and study its running time. In the former
case where the computational cost is estimated before
implementing the algorithm, researchers study instead
what lead to the programs, i.e. their algorithms. Thus,
the computational cost of a metaheuristic algorithm
could be analyzed before even implementing it. Hence,
the purpose of analyzing algorithms is not to exactly
determine how many seconds (or computer cycles) an
algorithm will take. This is not a good measure of the
efficiency of an algorithm since running it on a faster
computer will not make it, as an algorithm, “better”
[8]. The process for obtaining estimates of the time
and space required to execute an algorithm is called
algorithm analysis [1].

Time complexity studies the time needed by an
algorithm to solve the problem as a function of the
size of its input [9]. To estimate the time complex-
ity of an algorithm (a metaheuristic approach in our
case), the input size must be identified and the basic
operation of the algorithm must be counted. This gen-
erally results in a reasonable estimate of the efficiency
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of an algorithm and helps in comparing different al-
gorithms with respect to their computational cost. On
the other hand, estimation of the actual execution time
of an algorithm depends on the hardware being used,
the quality of the algorithm implementation and how
the program is translated into machine language [1].
This paper provides a guide on:

1. how to determine the time complexity of a meta-
heuristic,

2. how to empirically determine the computational
cost of a metaheuristic implementation,

3. how to compare the efficiency of different meta-
heuristics, and

4. how to report the above results.

Three well-known metaheursitics are used as repre-
sentative examples and test cases. Mathematical anal-
ysis of the time complexity of metaheuristics is dis-
cussed in Section 2. Next, an empirical analysis of the
computational cost of the implementation of the algo-
rithms is presented in Section 3. Section 4. concludes
the paper.

2 Mathematical Time Complexity Analy-
sis

Time complexity, also called time efficiency, is used
to quantify how fast an algorithm runs [6]. According
to [6], the steps needed to analyze the time complexity
of an algorithm are:

1. decide on the parameter(s) that indicate(s) the
size of the input(s);

2. identify the basic operation of the algorithm (typ-
ically found in the inner-most loop). The basic
operation is the operation contributing the most
to the total running time (typically comparison or
arithmetic [8]);

3. check whether the number of times that the ba-
sic operation of the algorithm is executed depends
only on the size of the input; and

4. set up the sum expressing the number of times that
the basic operation of the algorithm is executed.

The above steps are applied to the differential evo-
lution (DE) [10] algorithm (listed in Algorithm 1). DE
is a powerful optimization algorithm that belongs to
the class of evolutionary algorithms. The algorithm
operates by maintaining a population of candidate so-
lutions and iteratively improving them via a process
of mutation, crossover and greedy selection. DE em-
ploys differential operators to create trial solutions by
combining information from different solutions within
the population. The simplicity of DE, coupled with
its ability to handle both continuous and discrete opti-
mization problems, makes it a popular choice in various

domains, including engineering, finance, and machine
learning [3]. The steps of computing the time complex-
ity of DE are as follows:

Step 1: There are three main inputs to DE, i.e.

1. G, the number of generations,

2. N , the population size, and

3. D, the problem dimensionality.

Thus, these are the sizes of inputs of the algorithm.
In Step 2, the basic operation needs to be identified.

There are two possible candidates:

1. The comparison, i.e. rand < CR || i = irand (or
the rand operation since it may be more compu-
tationally expensive than the comparison opera-
tion); or

2. function evaluation.

The first one requires D iterations. The other can-
didate, i.e. function evaluation, is more difficult to
estimate since it depends on the problem (sometimes
it needs D iterations, sometimes more). To make the
analysis simpler, assume that the function evaluation
step also requires D iterations.

Regarding Step 3, the number of basic operations
are the same for all inputs of the same size; therefore,
in terms of this metric, there is no need to distinguish
between the worst, average, and best cases here.

Finally, in Step 4, the time complexity is estimated
by setting up a summation:

G∑
k=1

N∑
i=1

D∑
j=1

1 = G ·N ·D

Hence, the time complexity of DE is Θ(G · N · D).
The population initialization step requires Θ(N ·D) and
thus can be ignored as stated by the following Theo-
rem:

Theorem. If t1(n) ∈ Θ(g1(n)) and t2(n) ∈ Θ(g2(n)),
then t1(n) + t2(n) ∈ Θ(max{g1(n), g2(n)}). ■

For a proof of the above Theorem, please refer to [6]
(p. 56).

Let n be the maximum of G, N and D, then G ·N ·
D ≤ n3. In that case, the time complexity of DE is
cubic, i.e. O(n3). Even though this is less precise than
Θ(G ·N ·D), it gives an upper bound estimation on the
time efficiency of DE, which can be very useful when
comparing it with other metaheuristics.

The second example is the harmony search (HS) al-
gorithm [5] (listed in Algorithm 2). HS draws inspira-
tion from the musical improvisation process. It mim-
ics the process of musicians searching for harmonious
melodies. In HS, a population of candidate solutions
evolves over iterations to improve the harmony or bal-
ance between decision variables, ultimately converging
towards an “optimal” solution. The search process
is guided by three main operators: harmony memory
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considering rate, pitch adjusting rate and bandwidth.
Harmony search has demonstrated efficacy in solving
various optimization problems [4]. Application of the
above steps to HS yields the following:

1. The sizes of the inputs are the same as those of
DE, i.e. G, N and D.

2. The basic operation is the replacement step where
v replaces a member of X.

3. The time complexity depends only the inputs, i.e.
the values of the solutions in X.

4. The sum series is

G∑
k=1

N∑
i=1

D∑
j=1

1 = G ·N ·D

In the worst case, the replacement step requires N
comparisons (when v is worse than all the solutions
in X except the last one). Once a worse solution is
found, v replaces the worse solution, which requires
replacing the D components of the worse solution with
the D components of v. Thus, the time complexity
of HS is also Θ(G · N · D). However, if we assume
that n = max{G,N,D}, then the time complexity is
of O(n3), as for DE.
The third metaheuristic is the firefly algorithm (FA)

[13], which is a nature-inspired optimization algorithm
that takes inspiration from the flashing behavior of fire-
flies in their mating process. It mimics the interactions
between fireflies. Each firefly in the algorithm repre-
sents a candidate solution, and the attractiveness be-
tween fireflies is determined by their fitness values. The
algorithm leverages the movement of fireflies towards
brighter, more attractive ones to guide the search for
“optimal” solutions in the solution space. The time
complexity computation steps are applied to FA, giv-
ing the following:

1. The sizes of the inputs are the same as those of
DE, i.e. G, N and D.

2. The basic operation is the square root operation
used in the calculation of the Euclidean distance.

3. The time complexity depends only on the sizes of
the inputs.

4. The sum series is

G∑
k=1

N∑
i=1

N∑
l=1

D∑
j=1

1 = G ·N ·N ·D

Thus, the time complexity of the firefly algorithm
is Θ(G · N2 · D). Let n = max{G,N,D}, then the
time complexity is in O(n4), which is significantly less
efficient than DE and HS.
Table 1 summarizes the time complexity of the three

algorithms. Although the big-O (third column) is less
accurate than the big-Θ (second column), it gives a

Table 1: The time complexity of DE, HS and FA.

Algorithm Big-Θ Big-O
DE G ·N ·D n3

HS G ·N ·D n3

FA G ·N2 ·D n4

clearer picture of the difference in efficiency between
the three algorithms.

Sometimes, the metaheuristic is more complicated
like when the population size is not constant and it
changes during a run. In that case, the calculation
of the summation (i.e. Step 4) is more difficult. One
popular way to dynamically change the population size
is the one used in the popular DE variant, called L-
SHADE [12], where the population size decreases lin-
early according to the following equation:

Nt+1 = round[((Nfinal − N init)/nfemax) · nfe +
N init],
where Nt+1 is the population size in the next gener-
ation, N init the initial population size, Nfinal is the
final population size, nfe is the current number of func-
tion evaluations and nfemax is the maximum number
of function evaluations.

To make the calculations simpler, let N decrease
from G to 1 (or due to the commutative law of ad-
dition from 1 to N [8] (p. 16) as shown below), the
summation is

G∑
k=1

k∑
l=1

D∑
j=1

1 =

G∑
k=1

k∑
l=1

D =

G∑
k=1

D · k

= D ·
G∑

k=1

k = D · (G · (G+ 1))

2

Thus, using the above simplification, the time com-
plexity is still cubic, i.e. O(n3).

For non-population-based metaheuristics (e.g. sim-
ulated annealing [11]), the time complexity is typically
in O(n2), i.e. quadratic.

3 Empirical Analysis of Metaheuristics

This section empirically analyzes the time efficiency
of the three metaheuristics. All the experiments were
conducted on an HP Desktop with a 3.6 GHz Intel Core
i7, 32 GB RAM, running Matlab R2017b on MS Win-
dows 10 Pro 1. Given the fact that the time of a system
is generally not accurate, i.e. you may get different run-
ning time on repeated runs of the same program using
the same input, each experiment is repeated four times
and the average running time is reported.

Given that the focus of this paper is in studying
the time complexity of a metaheuristic rather than the
problem it solves, we decided to use the sphere function
defined as

1Code is available at
https://www.mathworks.com/matlabcentral/fileexchange/

156194-time-complexity-of-population-based-metaheuristics
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Algorithm 1: Differential Evolution.

Input: Population size N , maximum number of
generations G, problem dimension D,
mutation factor F , crossover probability
CR, objective function f

Output: Best solution xbest and its objective
function value

X ← InitializePopulation(N );
xbest ← the best individual in X;
for k ← 1 to G do

for i← 1 to N do
r1, r2, r3 ← Randomly select 3 distinct
indices from {1, 2, . . . , N};
for j ← 1 to D do

if rand < CR || i = irand then
vj ← xr1,j + F (xr2,j − xr3,j);

else
vj ← xi,j

if f(v) < f(xi) then
xi ← v;

return xbest and f(xbest);

Algorithm 2: Harmony Search.

Input: Population size N , maximum number of
generations G, problem dimension D,
Harmony Memory Considering Rate
HMCR, Pitch Adjusting Rate PAR,
objective function f

Output: Best solution xbest and its objective
function value

X ← InitializePopulation(N );
xbest ← the best individual in X;
for k ← 1 to G do

for j ← 1 to D do
if rand < HMCR then

Let xr,j be the j-th dimension of a
randomly chosen member from the
harmony memory X and
r ∈ {1, 2, . . . , N};
v ← xr;
if rand < PAR then

Adjust the value of vj by
adding/subtracting a certain
amount;

else
Generate a new solution, v,
randomly;

Accept v if it is better than a member of
X;

return xbest and f(xbest);

Algorithm 3: Firefly Algorithm.

Input: Population size N , maximum number of
generations G, problem dimension D,
objective function f

Output: Best solution xbest and its objective
function value

X ← InitializePopulation(N );
xbest ← the best individual in X;
Calculate light intensities by Ii = f(xi);
for k ← 1 to G do

for i← 1 to N do
for l← 1 to N do

if Il > Ii then
Move firefly i toward l in D
dimension via Levy flights;

Vary attractiveness with the
Euclidean distance between firefly i
and l;

Evaluate new solutions;

Rank the solutions and update xbest (if
needed);

return xbest and f(xbest);

Table 2: The execution time (in seconds) of DE, HS
and FA for different values of n. The “na” means not
available given that it takes a very long time to run (it
should be close to 331,466 seconds, which is 16 times
20716.5979).

n DE HS FA
100 1.6395 2.7132 89.2039
200 12.1905 17.5208 1343.9512
400 90.9248 120.7102 20716.5979
800 720.1308 912.3457 na

f(x) =
D∑

j=1

x2
j

as the objective function that the metaheuristic algo-
rithms should solve. Using another function should not
change our conclusions.

First, the findings of the previous section are fur-
ther investigated. Herein, n = G = N = D, which is
not a common setting. However, this allows the con-
firmation of the big-O time complexities computed in
Section 2. Different values of n are investigated to
study the impact of doubling the size of the input on
the performance of a metaheuristic. Table 2 shows the
results.

The ratios t(2n)/t(n) can be computed to see how
the running time reacts to the doubling of its input
size. Table 3 shows that the ratio t(2n)/t(n) for DE
and HS approaches 8, which confirms their cubic time
complexity, while t(2n)/t(n) approaches 16 for FA, also
confirming its O(n4) time complexity.

Fig. 3 presents the scatter plot of the execution time
of the different metaheuristics. The scatter plots help
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Table 3: Ratio t(2n)/t(n) of DE, HS and FA for 
different values of n. The “na” means not available 
given that it takes very long time to run.

t(2n)/t(n) DE HS FA
200/100 7.4355 6.45761 15.0661
400/200 7.45866 6.88954 15.4147
800/400 7.92007 7.55815 na

Table 4: The execution time (in seconds) of DE, HS
and FA for different values of n using typical settings.

n DE HS FA
100 16.2669 25.9594 216.3163
200 29.8226 43.7792 405.1537
400 56.3473 78.4623 789.8385
800 111.1285 145.1426 1588.9069

in ascertaining the probable efficiency class of an algo-
rithm. The plots show that both DE and HA seem to
belong to the same efficiency class, i.e. cubic, while FA
belongs to a different class, i.e. O(n4).

Figure 1: Execution time of DE, HS and FA on differ-
ent sizes of n.

Next, the performance of the three metaheuristics
on typical values of G, N and D is evaluated. For fair
comparison, the nfemax is fixed to 100000 function
evaluations and D ∈ {100, 200, 400, 800}. For DE G =
1000, N = 100; for HS, G = 100000 and N = 25; and
for FA, G = 4000 and N = 25.

The running time of the different metaheuristics
is reported in Table 4. Table 5 shows that the ra-
tio t(2n)/t(n) for the three algorithms approaches 2.
Thus, the three algorithms exhibit linear behavior with
increase in D. Fig. 2 confirms this observation.

After studying the individual time efficiency of each
algorithm, the way different metaheuristics are com-
pared is explained. The speedup metric used is defined
as execution time of B

execution time of A , where A is the algorithm we are
interested in (typically a newly-proposed metaheuris-
tic) and B a competitive algorithm. If the speedup is
greater than 1, then A runs faster, otherwise B is at
least as fast as A.
For example, let A be the HS (since it is faster than

FA and slower than DE). Table 6 summarizes the re-
sults, it shows that HS is slower than DE by a factor of
1.43, i.e. 43% slower. On the other hand, HS is faster
than FA by a factor of 9.65. Now, one may ask why

Table 5: Ratio t(2n)/t(n) of DE, HS and FA for 
different values of n using typical settings.

t(2n)/t(n) DE HS FA
200/100 1.83333 1.68645 1.97221
400/200 1.88942 1.79223 1.84984
800/400 1.97221 1.94948 2.01169

Figure 2: Execution time of DE, HS and FA on differ-
ent sizes of D using typical values for the parameters.

DE is faster than HS even though both are of the same
efficiency class? The answer is because of the constant
factor ignored when using the big-O/big-Θ notation.

An alternative way to empirically analyze the time
efficiency of a metaheuristic is by determining its algo-
rithmic overhead . The algorithmic overhead is com-
puted as the total running time of the metaheuristic
minus the time required to perform nfemax function
evaluations. This helps in separating the cost of the
objective function calculation from that of the algo-
rithm. Thus, the procedure of computing the algorith-
mic overhead is:

1. calculate the time required to perform nfemax

function evaluations (in our case the function is
the sphere function), denoted as T ,

2. calculate the running time of a metaheuristic using
nfemax function evaluations, referred to as Tm,
where m is the metaheuristic name, and then

3. compute Tm−T , which is the algorithm overhead.

To obtain more reliable estimations, T and Tm are
averaged over several runs (4 runs in our case).

Table 7 summarizes the results of using the above
procedure for DE, HS and FA on the sphere function.
It can be seen that T is very small compared to Tm;
hence, our conclusions do not change from the method

Table 6: The speedup of HS to DE and FA for different
values of n using typical settings.

n DE/HS FA/HS
100 0.626629 8.33286
200 0.681205 9.25448
400 0.718145 10.0665
800 0.76565 10.9472
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Table 7: Comparison of the algorithmic overhead for
DE, HS and FA.

n T TDE − T THS − T TFA − T
100 0.2327 16.0342 25.7267 216.083
200 0.2455 29.5771 43.5337 404.908
400 0.2792 56.0681 78.1831 789.559
800 0.3445 110.784 144.798 1588.57

that does not exclude the cost of computung the objec-
tive function. The algorithmic overhead is visualized
in Fig. 3.

Figure 3: Average algorithmic overhead (in seconds)
for DE, HS and FA, on increasing values of D.

4 Conclusions

The mathematical and empirical analysis of the time
complexity of three metaheuristic algorithms are out-
lined and explained. To demonstrate the application
of the introduced procedures for analyzing the time
efficiency of algorithms, we applied them to three well-
known metaheuristics, i.e. differential evolution, har-
mony search and the firefly algorithm. The main
strength of the mathematical analysis is its indepen-
dence of specific inputs. Its main limitation is its ap-
plicability and difficulty of estimating the average case.
The main advantage of the empirical analysis is its ap-
plicability to any algorithm. However, empirical anal-
ysis depends on the implementation, hardware and the
specific inputs used [6].

This paper shows the steps needed to compute the
time complexity of a metaheuristic. It explains how
to empirically determine the time efficiency of a meta-
heuristic and how to compare the computational cost
of different metaheuristic algorithms. Moreover, meta-
heuristics with a time complexity more than O(n3), as
in the firefly algorithm, are not appropriate for solving
relatively high-dimensional problems. Finally, it is use-
ful to analyze the computational cost of a metaheuristic
both mathematically and empirically as demonstrated
in the case of DE and HS, where even though both have
the same time complexity, the running time of DE is
clearly less than that of HS. This shows that although
time complexity “captures the high-level performance
of an algorithm, but constants matter too!” [7].
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