
MENDEL — Soft Computing Journal, Volume 30, No.1, June 2024, Brno, Czech RepublicX 

INTERMITTENT TIME SERIES DEMAND FORECASTING USING DUAL
CONVOLUTIONAL NEURAL NETWORKS

Sina Mirshahi1,2,3�, Patrick Brandtner2,3, Zuzana Koḿınková Oplatková3
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Abstract
Forecasting intermittent demands is challenging due to their irregular and unpre-
dictable demand pattern. This makes the businesses unprepared for upcoming
demands, where the conventional methods often fail to predict the demand oc-
currence pattern sufficiently. In this paper, we proposed a two-step approach,
”UR2CUTE,” (Using Repetitively 2 CNN for Unsteady Timeseries Estimation),
employing Convolutional Neural Networks (CNNs) specifically designed to handle
the unique challenges of intermittent time series. CNNs, known for their effec-
tiveness in capturing spatial and temporal patterns in data, offer a promising area
to improve forecast accuracy in predicting time series demand patterns. Our ap-
proach presents a combined process for intermittent demand forecasting. A CNN
model is initially designed as a binary classifier to determine demand occurrence.
Afterward, a distinct CNN model is employed to estimate the magnitude of the
demand. This dual-phase approach improves forecasting accuracy in intermit-
tent demands, specifically in predicting the non-demand (Zero-Demand). The
suggested approach notably surpasses traditional forecasting techniques, including
Croston’s method, which is tailored for intermittent demand forecasting. It also
outperforms other methods like XGboost, Random Forest, ETR, Prophet, and Au-
toArima, especially in predicting the lead time demand distribution for sporadic
demands. The deployment of dual CNN models facilitates a deeper understanding
of intermittent demand dynamics. This, in turn, enhances supply chain man-
agement effectiveness and efficiency, offering a robust solution to the complex
challenges of intermittent demand forecasting.
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1 Introduction

Intermittent demand forecasting (IDF) presents
a unique challenge in time series analysis, mainly
due to demand data’s sporadic and unpredictable
nature, which often includes long periods of zero
demand followed by bursts of activity [8]. This type
of demand is commonly encountered in sectors such
as supply chain management, spare parts inventory,
and online retail, where accurate forecasting is crucial
for maintaining optimal inventory levels and meeting
customer needs without incurring excessive costs [1].

Croston first introduced the concept of intermittent
demand in 1972 [4]. In the forecasting literature, there
is a considerable focus on rapidly changing time series
data, often favoring causal models when abundant in-
formation is available. However, intermittent demand
series and their associated models have received com-
paratively less attention [20]. The intermittence of
data is conceptualized as a pattern characterized by
the presence of zero values within the dataset [23].

Traditional statistical methods like ARIMA are gen-
erally ineffective for intermittent demand due to their
reliance on the assumption of stationarity, which is of-
ten violated by the high frequency of zero values in
the data. Over the past five decades, few forecasting
methods have been developed explicitly for intermit-
tent data, leading to a significant gap in the literature
and practice [20]. Existing methods, such as Croston’s
approach and its variants, which focus on modeling
the inter-demand intervals and aggregation techniques
that smooth out the intermittency, have shown some
success but still face limitations in terms of accuracy
and applicability [2]. Despite the significant attention
given to modern machine learning and AI-based pre-
diction models in this domain, there is still room for
improvement in result accuracy [5]. Modern supply
chains’ growing complexity and dynamism underscore
the need for more effective intermittent demand fore-
casting methods [19, 30].
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Recent advancements in deep learning, particularly
in applying convolutional neural networks (CNNs),
have opened new avenues for tackling the complexi-
ties of intermittent demand forecasting. CNNs have
demonstrated remarkable success in various domains,
including image recognition and natural language pro-
cessing, due to their ability to capture spatial hierar-
chies and local patterns in the data. Based on this,
researchers have begun exploring using CNNs for time
series forecasting, converting time series data into vi-
sual representations to leverage these networks’ pow-
erful feature extraction capabilities [24].
Addressing this gap, we propose an innova-

tive methodology building on dual convolutional
neural networks (i.e., “Using Repetitively 2 CNN
for Unsteady Timeseries Estimation”, short:
“UR2CUTUE”). Our approach aims to enhance
the prediction of irregular patterns in time series data.
It divides the predictive process into two phases:
identifying event occurrences (order prediction) and
quantifying their magnitude (quantity prediction).
This bifurcated method is specifically designed to
address the unique characteristics of intermittent time
series, resulting in improved predictive accuracy for
both timing and magnitude of sale demands.
We evaluate our model by employing a real-world

dataset featuring intermittent time series data on ma-
terial demand from an ongoing research project fo-
cusing on advanced supply chain management analyt-
ics. The initial dataset spans over six years and in-
cludes daily demand amounts, resulting in over 3.3 mil-
lion records for more than 5000 materials. The input
dataset for training and testing the UR2CUTE model
comprises aggregations on a weekly level, covering 326
weeks from 2017 to 2023 for 99 materials showing inter-
mittent demand behavior. We compare UR2CUTE’s
performance against other established models, includ-
ing AutoARIMA, Croston, ETR, Prophet, RFR, and
XGBoost.
The remainder of this paper is structured as follows:

Section 2 provides background information on intermit-
tent demand forecasting and related work—and section
3 details the methodology, including the architecture of
our proposed UR2CUTE model. Section 4 presents the
evaluation results, comparing our model’s performance
against other models. Finally, Section 5 concludes the
paper, discussing the implications of our findings and
potential future research directions.

2 Background

In business decision-making, accurately forecasting de-
mand is vital for ensuring operational efficiency and
meeting customer expectations. Intermittent demand,
which refers to irregular and sporadic demand patterns,
presents unique challenges across various sectors. Un-
like steady or seasonal demand, intermittent demand
is characterized by unpredictable periods of no activity
followed by sudden spikes, making it difficult to apply
traditional forecasting techniques effectively. In sup-

ply chain management, such demand poses significant
challenges, e.g., for inventory management, as tradi-
tional forecasting methods need to predict the timing
and magnitude of demand accurately. Appropriate ap-
proaches to intermittent demand are crucial to avoid
overstocking, which can lead to high holding costs, or
understocking, which risks stockouts and lost sales. Ef-
fective intermittent demand forecasting enables busi-
nesses to optimize inventory levels, reduce costs, and
improve service levels, ensuring a more resilient and
responsive supply chain [3, 34].

The concept of intermittent demand was first de-
fined by Croston in 1972. While Croston’s method
tends to have a positive bias, it performs well in inven-
tory management. Optimizing smoothing constants at
the individual SKU level is less effective compared to
optimization across multiple SKUs. In the realm of
inventory control, Croston’s method consistently out-
performs others, even in scenarios where there is a
decline in demand [33]. To overcome the poor per-
formance of traditional intermittent forecasting, par-
ticularly in addressing the high variation characteris-
tic of demands for aircraft spares, effective methods
such as the weighted moving average (WMA) were
investigated due to their superior forecasting perfor-
mance [9]. Wallström and Segerstedt [31] employed
principal components analysis (PCA) to show that the
presented measures of forecast errors represent differ-
ent dimensions, which makes it impractical to reduce
them to a single dimension without sacrificing infor-
mation. Therefore, it is suggested that several mea-
sures be interpreted to comprehensively evaluate fore-
casting methods, highlighting that the dimensions vary
among different forecasting techniques. Their paper
introduced supportive error measures, such as Cumu-
lative Forecast Error (CFE) in conjunction with the
Percentage of Inventory Shortages (PIS) and Number
of Shortages (NOSp), to trace bias more reliably [31].
New models for intermittent demand forecasting have
been introduced by Snyder et al. [27]. They com-
pared the models with established forecasting meth-
ods using a database of car parts demands. Their
study showed that the traditional static Poisson for-
mat is insufficient for products with low-volume inter-
mittent demands. Their results showed the strength
of simple exponential smoothing that works well with
an unrestricted negative binomial distribution, and a
multi-model approach with information criteria does
not provide significant advantages [27]. The effect of
combining forecasting approaches for intermittent de-
mand using four methods: combining different meth-
ods on original data, combining estimates from a sin-
gle method applied on different frequencies, combining
methods on multiple frequencies, and averaging fore-
casts from multiple aggregation levels has been inves-
tigated by Petropoulos and Kourentzes [22]. Combin-
ing outputs from multiple methods does not necessarily
improve forecasting performance. However, combining
forecasts derived from transformed frequencies using
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the same or multiple methods improves prediction per-
formance [22]. Forecasting of a similar time series with
a fuzzy approach has been developed by Novák and
Mirshahi [21]. Overcoming the complexity of intermit-
tent demands, Kourentzes investigated two neural net-
work models, NN-Dual and NN-Rate [14]. Proposed
models were designed to provide dynamic demand rate
forecasts and overcome the limitations of traditional
methods like Croston’s. They evaluated the effective-
ness of their model on inventory simulation with 1000
time series. The models incorporate regularized train-
ing and median ensembles to address the challenge of
limited fitting samples in intermittent demand. De-
spite suboptimal accuracy, the NN models, particu-
larly NN-Rate, outperform Croston’s method regard-
ing service levels without requiring significant increases
in stock holding. The study underscores the inade-
quacy of conventional forecasting accuracy metrics for
evaluating intermittent demand methods, emphasizing
the importance of considering inventory metrics [14].

The forecasting accuracy of single-hidden layer neu-
ral networks for intermittent demand has been ana-
lyzed by Lolli et al. [18]. Comparisons were made with
standard methods (CR and SBA) using different input
patterns and architectures. Back-propagation demon-
strated superior performance in Mean Absolute Per-
centage Error (MAPE), with the two-input network
showing the lowest bias. Although back-propagation
outperformed, the computational cost is higher, mak-
ing the easier-to-implement extreme learning machines
a potential area for future research [18]. The applica-
tion of LSTM in retail has been investigated by Fala-
touri et al. [8]. The probabilistic Spatial framework
for Intermittent Demand Forecasting has been consid-
ered by Türkmen [29], drawing on renewal theory and
probabilistic neural forecasting. They extend simple
models with flexible inter-demand time distributions
to capture various demand patterns. The results show
improved probabilistic forecasts with renewal processes
and further enhancements with RNNs, particularly on
larger datasets like the M5 competition [29]. Similarly,
the Spatial-Temporal network has been used by Fala-
touri et al. [7] to predict intermittent demand for dis-
tributed maintenance needs. The use of Deep CNN-
LSTM for inventory forecasting has been done by Xue
et al. [32]. However, tuning the parameters of the net-
work is one of the challenges in this approach. Var-
ious heuristic methodologies have been explored for
forecasting in different domains. For example, Sme-
jkalová et al. [26] developed a heuristic methodology
for forecasting quantities in waste management, which
addressed challenges associated with short time series
by combining multiple techniques. Tian et al. [28] used
the forecasting Markov-combined method (MCM) for
two big datasets (Alibaba and JD) with intermittent
demands. They claimed their method has a practi-
cal, solid application because it combines several simple
methods [28]. The ensemble models, such as the modi-
fied DeepAR model named rolled DeepAR, with rolling

future predictions, have been introduced by Jeon and
Seong [11] to improve the final result.

This paper introduces a forecasting algorithm for
intermittent demand’s cumulative distribution over a
fixed lead time. They utilized historical service parts
demand data from nine industrial companies; the pro-
posed method demonstrates superior accuracy in esti-
mating lead time demand distribution compared to ex-
ponential smoothing and Croston’s variant. The new
bootstrapping approach offers advantages, including
adaptability to variable lead times and enhanced per-
formance, particularly for short lead times, making it
an appealing option for practitioners seeking improved
forecast accuracy.

3 Method

3.1 Convolutional Neural Networks in UR2CUTE

Convolutional Neural Networks (CNNs) represent a set
of deep neural networks that are highly powerful in
processing data, such as images and time series, with a
grid-like topology [17]. Characterized by their unique
architecture, Convolutional Neural Networks (CNNs)
utilize convolutional layers to capture spatial hierar-
chies of features autonomously and adaptively from
input data. These models capitalize on three funda-
mental principles: local receptive fields, weight shar-
ing, and spatial subsampling. Fields shared weights
and spatial subsampling [15] enable them to succeed
remarkably in task time series analysis. In intermit-
tent demand forecasting, CNNs are particularly valu-
able for their ability to capture and model temporal
patterns and dependencies within the data [16], offer-
ing a powerful tool for understanding and predicting
complex demand dynamics [13].

The standard architecture of a CNN processes data
through a sequence of layers, starting with the input
layer, moving through convolutional layers and pooling
layers, and concluding with fully connected layers that
produce the final output. This structure is pivotal for
extracting features and making predictions based on
complex data patterns [12] - Fig 1.

Figure 1: The Generic architecture of CNN

Intermittent demand forecasting poses unique chal-
lenges due to the irregular occurrence of demand and
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the variability in quantities ordered. Our approach
(UR2CUTE) addresses these challenges by leveraging
the strengths of CNNs. Employing two distinct models
for predicting order occurrence and demand quantity,
UR2CUTE aims to provide a nuanced understanding
of demand dynamics.
The architecture of the CNN models in UR2CUTE

is meticulously designed to process time series data ef-
ficiently. CNN model core comprises several convolu-
tional layers, which apply filters to the input data to
extract and learn temporal features. For layer l, the
convolution operation is mathematically represented in
Formula (1).

Fl,k(t) = ϕ

(
M∑
i=1

Wl,k,j ·Xt+j−1 + bl,k

)
(1)

Where F(l, k) (t) is the output of the k-th filter in
layer l at time t, W(l, k, j) denotes the filter weights, M
is the filter size, b(l, k) is the bias, and ϕ is the activa-
tion function (e.g., ReLU). A MaxPooling layer comes
after the convolutional layers to reduce the data’s di-
mensionality, thereby improving the model’s general-
ization ability. Once the convolutional and pooling lay-
ers extract high-level features, these features are flat-
tened and passed into fully connected layers, eventually
leading to an output layer customized for the specific
prediction task. The order prediction model utilizes a
sigmoid activation function [6]. The order occurrence
probability is used as a classifier to predict an order’s
existence and absence. At the same time, the quantity
prediction model employs a linear activation for con-
tinuous demand quantity predictions. The sequence
of convolutional, pooling, and fully connected layers
designed to capture temporal patterns in demand fore-
casting is illustrated in Fig 2.

Figure 2: The architecture of the CNN model used in
the UR2CUTE approach.

3.2 Model Training

Practical feature engineering is crucial for enhancing
the predictive capability of CNNs in time series fore-
casting. In the UR2CUTE approach, we employ a
multi-step feature engineering process to prepare the
input data for our models, ensuring they can capture

and learn from the complex patterns in demand data.
As mentioned, the original dataset spans over six years
and includes daily demand amounts, resulting in over
3.3 million records for more than 5000 materials. The
input dataset comprises aggregations on a weekly level,
covering 326 weeks from 2017W01 to 2023W13 for 99
materials with intermittent demand behavior. This in-
put dataset was split into training and testing data
with a ratio of 85% for training (i.e., 277 weeks for 99
materials) and 15% for testing (i.e., 49 weeks for 99
materials).

The initial phase of our feature engineering process
entails aggregating demand data [10], which can be
performed over various intervals, such as daily, weekly,
or monthly, depending on the specific requirements and
characteristics of the dataset. In our approach, we
opt for weekly aggregation. This decision to consol-
idate daily observations into weekly summaries effec-
tively minimizes the noise and variability inherent in
the data, thereby enabling the model to concentrate
on discerning more substantial, long-term trends. This
aggregation is accomplished through a custom function
designed to cumulate demand for each week, thereby
transforming the time series data into a format that
more accurately represents weekly demand patterns.
This strategic choice underscores our method’s adapt-
ability, allowing users to tailor the aggregation interval
to best suit their analysis needs and the peculiarities
of their demand data.

Following the aggregation, we generate lagged fea-
tures to capture the historical demand trends effec-
tively. For demand Xt at time t, we create a series
of lagged features X(t−1), X(t−2), ...,X(t−n), where
n represents the number of prior periods we consider.
This approach allows the model to learn from the tem-
poral dependencies in demand, providing a structured
format that is highly amenable to CNN analysis. In-
cluding these lagged features ensures that our models
can accurately leverage past demand patterns to fore-
cast future demand.

An essential component of our feature engineering
process is input data normalization [25]. Given the
variability in demand data and the potential influence
of outlier values, we apply normalization techniques to
scale the features into a consistent range. This step,
implemented with the MinMaxScaler, assures that all
input variables have an equal impact on the model’s
learning process, avoiding the dominance of any single
feature due to varying scales. Normalization is crucial
for models like CNNs, which are sensitive to the scale
and distribution of input data.

Through these feature engineering steps—weekly
data aggregation, generation of lagged features, and
normalization—we create a robust dataset optimized
for CNN analysis. This structured approach to prepar-
ing the input data significantly enhances the models’
ability to learn from historical data, ensuring that our
CNNs can effectively capture and predict the complex
dynamics of intermittent demand.
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Distinct loss functions are utilized for each model to
cater to their specific forecasting objectives. The order
prediction model minimizes binary cross-entropy loss,
which is ideal for binary classification tasks in Formula
(2).

Lbinary = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(2)

With N representing the sample size, yi the true la-
bel, and ŷi the predicted order occurrence probability
for the sample i.

For the quantity prediction model, a custom loss
function combines mean squared error (MSE) and
mean absolute error (MAE) to reflect the demand
quantity’s magnitude accurately. This combination al-
lows the model to balance the importance of significant
errors—which can significantly impact the overall per-
formance—against the need to minimize smaller but
potentially more frequent errors. The combined loss
function is justified by its ability to provide a more
holistic view of the model’s performance across vari-
ous demand quantities, leading to more accurate and
robust demand forecasts. The selection of the hyper-
parameter α In the combined loss function, it is critical
to balance the contributions of MSE and MAE to the
overall loss. To optimize this and other hyperparame-
ters, we employ the Optuna framework, a hyperparam-
eter optimization library that systematically searches
through predefined parameter space to find the most
effective values. This process ensures that the model’s
performance is maximized by fine-tuning the balance
between precision and sensitivity to errors in Formula
(3).

Lquantity = α ·MSE+ (1− α) ·MAE

= α · 1

N

N∑
i=1

(qi − q̂i)
2 + (1− α) · 1

N

N∑
i=1

|qi − q̂i| (3)

Where qi and q̂i are the true and predicted quanti-
ties, respectively, and α balances the two error metrics.

4 Result and evaluation

To evaluate our proposed model, we conducted a com-
parative analysis alongside six other prominent models,
including AutoARIMA, Croston, ETR, Prophet, RFR,
and XGBoost. For this purpose, we have selected ma-
terials from our practical use case that exhibit inter-
mittent behaviors. Based on Croston [4], we have cho-
sen materials with an Average Demand Interval (ADI)
greater than 1.32 and a coefficient of variation (CV2)
less than 0.49. Applying these criteria, 99 materials
remained, and we utilized our model, along with the
other mentioned models, to predict their sales values
on unseen data (test dataset).

Sales volumes among the selected materials are sig-
nificantly different; some have higher sales volumes
than others; we had to employ appropriate metrics
across different materials to evaluate the performance
of our models. To this end, we utilized the following
metrics. It is essential to mention that metrics such as
MAPE may not be appropriate for our analysis. This
is because we evaluate intermittent demand, which in-
herently includes zero values in our dataset [19].

Mean Absolute Error % (MAE %)

MAE % =
MAE

ȳ
=

1

n

n∑
t=1

|ŷt − yt|
ȳ

(4)

Root Mean Square Error (RMSE%)

RMSE % =
RMSE

ȳ
=

√√√√ 1

n

n∑
t=1

(ŷt − yt)2

ȳ
(5)

Coefficient of Determination (R2)

R2 = 1−
∑n

t=1(ŷt − yt)
2∑n

t=1(yt − ȳ)2
(6)

To gain a better overview and understanding of our
model’s performance compared to other models, we
have used a whisker plot to represent the distribution of
evaluation metrics across materials Fig 3. These plots
visually compare critical statistics such as median and
quartiles, helping to identify performance variability
across materials. Additionally, they highlight the con-
sistency of our model compared to others and assist in
detecting outliers.

Closer proximity of the box elements indicates that
the model performs reliably and uniformly across all
materials. For two metrics, MAE% and RMSE%, lower
values indicate better accuracy, while higher values in-
dicate more accurate prediction for R-squared.

It’s worth noting that, as acknowledged in our previ-
ous discussions, accurate predictions can be challenging
due to the intermittent nature of demand. As shown
in Fig 3, the evaluation metrics for such cases may
not perform as well as expected, as most of the ma-
terials have high MAE% and RMSE% and negative
R-squared values, especially when compared to fore-
castable materials. However, UR2CUTE outperforms
other models across all three metrics, indicating that
for two metrics, MAE% and RMSE%, the lower and
more compact boxes, and for R-squared, higher and
more compact boxes, compared to the other models.

For MAE%, although the median is not significantly
different from other models where 93.6% compared to
the best 89.6%), almost 75 percent of materials (below
the 75th percentile) have MAE% less than 100%, and
50 percent of materials with the range between the
25th and 75th percentile have MAE% between 78%
and 100%. In contrast, other models exhibit a wider
range of performance. XGBOOST performs the best
among the other models, ranging from 93% to 185%
for the interquartile range.
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Figure 3: Distribution of evaluation metrics across materials

Regarding RMSE%, similar to MAE%, although the
median is not significantly different from other models
(139% compared to the best 131%), our model outper-
forms other models, as almost 75% of the data (below
the 75th percentile) have RMSE% less than 152%, com-
pared to the best performer, RFR, which has RMSE%
less than 244.5%, indicating significant improvement
once again.

Finally, for R-squared, again, our model performed
better, particularly regarding the data below the 75th
percentile.

Our analysis of the model yielded another valuable
insight: adding the classifier to the model improved
performance in some materials. Specifically, it pre-
dicted zero values when other models typically pre-
dicted a fixed value during extended periods of no sales
activity. To illustrate this, we included the results of
predictions and actual values for a specific material in
Fig 4. As shown in the figure, after week 35 (indicated
by the dashed vertical line), our model (UR2CUTE)
predicted zero values when there were no actual sales
values for the remainder of the period. In contrast,
other models maintained a fixed amount, significantly
deviating from the actual zero sales value.

5 Discussion and Conclusion

The UR2CUTE methodology, through its two-step use
of CNNs and meticulous data preprocessing and model
training, offers a sophisticated solution to the chal-
lenges of intermittent demand forecasting. By captur-
ing the complex temporal patterns and dependencies
inherent in in-demand data, UR2CUTE provides ac-
curate predictions for the occurrence and quantity of
future demand. It provides a way for more effective
and efficient supply chain management.

Traditional models, such as Croston’s method and its
variations, while foundational in the field of intermit-
tent demand forecasting, have notable limitations in
accuracy, particularly when faced with highly irregular
demand patterns [27]. The results of our UR2CUTE
methodology exhibit a significant improvement in the
forecasting accuracy of intermittent demand compared
to traditional methods. Our model’s superior per-

formance, indicated by lower Mean Absolute Error
(MAE%) and Root Mean Square Error (RMSE%) val-
ues, along with higher R-squared values, underscores
the efficacy of using Convolutional Neural Networks
(CNNs) to capture the temporal dependencies inher-
ent in intermittent demand data.

Previous studies confirmed that combining multiple
methods’ outputs does not necessarily improve fore-
casting performance [22]. In the case of UR2CUTE,
we combined two CNNs – one for frequency and one
for magnitude of demand. Our results indicate a signif-
icant improvement and show how combining multiple
methods can improve forecasting accuracy for intermit-
tent demand.

Convolutional Neural Networks (CNNs) have been
widely applied in time series prediction across vari-
ous domains because they automatically extract and
learn relevant features from raw data. Generic applica-
tions of CNNs in time series forecasting include finan-
cial market analysis, weather prediction, and anomaly
detection in industrial processes. These methods typi-
cally involve transforming time series data into formats
suitable for CNN processing, such as sequences of ob-
servations or image-like representations that capture
temporal dependencies.

However, generic CNN applications in time series
data are not specifically optimized for the unique chal-
lenges posed by intermittent demand forecasting. For
instance, in the study by Semenoglou et al. [24],
a method called “ForCNN” transforms time series
data into visual representations, leveraging architec-
tures like VGG-19 and ResNet-50 for forecasting. The
strengths of ForCNN include the ability to leverage
well-established image processing techniques and the
potential for high accuracy in diverse forecasting tasks.
While this approach is innovative and effective for gen-
eral time series data, it may need to address the chal-
lenges of intermittent demand patterns fully. In con-
trast to ForCNN, UR2CUTE offers several distinct ad-
vantages, particularly for intermittent demand fore-
casting. First, UR2CUTE handles time series data di-
rectly, eliminating the need to transform time series
into images, as ForCNN requires. This direct process-
ing approach simplifies preprocessing and avoids the
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Figure 4: Comparison of Predicted and Actual Sales Values for a Specific Material: Impact of Classifier Inte-
gration

risk of information loss during transformation. Second,
UR2CUTE is tailored explicitly for intermittent de-
mand scenarios, utilizing dual CNNs to predict the oc-
currence and magnitude of demand separately. In con-
trast, ForCNN employs a more generalized approach,
which may not effectively capture the unique character-
istics of intermittent time series. Lastly, UR2CUTE’s
architecture is optimized for intermittent time series,
resulting in a less computationally intensive model
compared to the more complex structures used in For-
CNN. This optimization leads to faster training times
and reduced computational costs, enhancing its suit-
ability for intermittent demand forecasting.

Another study by Xue et al. [32] presented a hybrid
CNN-LSTM model for inventory forecasting, which
combines the strengths of CNNs in capturing local
trend features and LSTMs in learning long-term de-
pendencies. These models are effective in handling
highly nonlinear and non-stationary inventory data.
UR2CUTE’s dual CNN approach focuses specifically
on intermittent demand by using two specialized CNNs
for occurrence and magnitude predictions. In con-
trast, hybrid CNN-LSTM models are more complex,
requiring careful architecture design and parameter
tuning. Furthermore, the evolutionary algorithms for
optimizing CNN-LSTM architectures can be compu-
tationally intensive and require substantial computa-
tional resources. UR2CUTE, with its simpler architec-
ture, offers a more efficient solution while maintaining
high accuracy.

In summary, image-based time series forecasting
methods like ForCNN and hybrid models like CNN-
LSTM have shown that sophisticated architectures can
enhance forecasting accuracy. However, UR2CUTE
demonstrates that directly addressing the unique char-
acteristics of intermittent demand through specialized
CNN architectures can provide even more significant
improvements. This positions UR2CUTE as a robust

and effective tool for modern supply chain management,
capable of adapting to the dynamic and complex nature
of intermittent demand.
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Appendix 1

Approach Process and Pseudo Code

To clarify the process of the UR2CUTE approach,
we detail the steps taken from data preprocessing to
model training and prediction as follows:

# Data Preprocessing
1. Aggregate demand data weekly.
2. Generate lagged features for the time series data.

# Model Training
3. Split the data into training and testing sets.
4. Normalize the features (if required).
5. Reshape data for the neural network.
6. Set up early stopping based on validation loss.

# Order Prediction Model
7. Build the CNN model for order prediction.
8. Compile the model with binary cross-entropy loss.
9. Train the model using the training data.

# Quantity Prediction Model
10. Build the CNN model for quantity prediction.
11. Compile the model with a custom loss function
(MSE and MAE).
12. Train the model using the training data.

# Model Prediction
13. Make predictions using the trained models.
14. Combine predictions to estimate order quantities.

Github repository, has created for code for detailed
code review: FH-Prevail. *UR2CUTE*. GitHub,
https://github.com/FH-Prevail/UR2CUTE.git.

59


	1 Introduction
	2 Background
	3 Method
	3.1 Convolutional Neural Networks in UR2CUTE
	3.2 Model Training

	4 Result and evaluation
	5 Discussion and Conclusion
	References

