

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

AN EXPERIMENTAL STUDY ON COMPETITIVE COEVOLUTION OF

MLP CLASSIFIERS

Marco Castellani, Rahul Lalchandani

University of Birmingham

Department of Mechanical Engineering

Birmingham B15 2TT

United Kingdom

m.castellani@bham.ac.uk

Abstract: This paper investigates the effectiveness and efficiency of two competitive (predator-prey) evolutionary

procedures for training multi-layer perceptron classifiers: Co-Adaptive Neural Network Training, and a modified

version of Co-Evolutionary Neural Network Training. The study focused on how the performance of the two procedures

varies as the size of the training set increases, and their ability to redress class imbalance problems of increasing

severity. Compared to the customary backpropagation algorithm and a standard evolutionary algorithm, the two

competitive procedures excelled in terms of quality of the solutions and execution speed. Co-Adaptive Neural Network

Training excelled on class imbalance problems, and on classification problems of moderately large training sets. Co-

Evolutionary Neural Network Training performed best on the largest data sets. The size of the training set was the most

problematic issue for the backpropagation algorithm and the standard evolutionary algorithm, respectively in terms of

accuracy of the solutions and execution speed. Backpropagation and the evolutionary algorithm were also not

competitive on the class imbalance problems, where data oversampling could only partially remedy their shortcomings.

Keywords: evolutionary algorithms; coevolution; predator-prey systems; multi-layer perceptron; pattern classification.

1 Introduction

Training a multi-layer perceptron (MLP) [1] classifier is essentially an optimisation problem in the high-dimensional

space of the neural network (ANN) weights. The optimal solution is the one that attains the smallest classification error,

or, equivalently, the highest classification accuracy. The most popular MLP training method is error backpropagation

(BP) [2], a greedy optimisation algorithm based on gradient descent of the error surface. Due to the local search

approach, BP is liable to get trapped into sub-optimal error minima, or be deceived by noise in the training patterns. For

these reasons, global optimisation techniques like evolutionary algorithms (EAs) have been employed as alternative

training methods [3] [4]. The standard EA procedure is to evolve a population of MLP solutions using the classification

accuracy as fitness measure. Unfortunately, EAs imply a high computational cost due to the need to evolve a population

of candidate solutions. If large ANNS or training sets are used, this cost implies prohibitively long execution times.

Typical evolutionary MLP learning curves are characterised by an initial phase of rapid improvement, where the

population quickly locates one or more regions of high fitness in the parameter space, and a second phase of slow

progress where the population gradually converges to a fitness peak. In the first phase, the candidate solutions learn a

broad-brush description of the decision regions, which allows them to classify correctly the majority of the data

patterns, whilst in the second phase they refine the borders of such regions. That is, in the second phase the individuals

learn to discriminate those patterns that lie at the boundary between two or more classes [5]. To speed up the learning

process, BP is often used as an additional genetic operator (Larmarckian evolution, [4]). However, the addition of BP

increases the computational complexity of the EA, and the whole procedure may become impractically long.

One of the most time-consuming procedures in EA optimisation is the evaluation of the population fitness. For MLP

classifiers, the accuracy of the candidate solutions is typically calculated on the whole training set of examples. This

procedure implies that each training pattern needs to be forward processed by every individual. If Lamarckian evolution

is used, two further (one forward and one backward) data passes need to be performed for each training pattern by each

solution undergoing BP. Random sampling of the training set [4] helps to reduce the cost of evaluating and training the

solutions, but may reduce the learning accuracy and speed. Ideally, as the learning process progresses, the sampling

procedure should adaptively focus on the not yet learned examples.

Paredis introduced CGA [5][6], a coevolutionary genetic algorithm inspired by biological predator-prey interactions.

In this scheme, one standard EA (GENITOR [7] in CGA) is used to evolve a population of MLP classifiers, and another

evolutionary procedure is used to select from the training set the patterns for MLP fitness evaluation. The classifiers

(predators) are evaluated on their ability to categorise (capture) randomly selected subsets of data samples (prey), whilst

the data samples are evaluated on the number of times they are misclassified (ability to escape predation). The samples

are selected for the evaluation subsets with a likelihood that is proportional to their fitness. According to this scheme, an

evolutionary tug-of-war is created between classifiers and training data, with the aim of increasing the effectiveness and

41

ISSN: 1803-3814

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

efficiency of the training procedure. Paredis experimentally showed that, after the initial phase of rapid improvement of

the accuracy, the fittest prey lied at the boundaries of the data categories. By selecting mainly these difficult examples,

CGA could outperform the GENITOR algorithm in terms of quality of the solutions and execution speed.

In a recent experimental study, Castellani [8] proved the robustness of two predator-prey MLP training algorithms to

noisy and overlapping data categories. That is, when the nature of the data does not allow 100% classification accuracy,

the coevolutionary procedure is not lead astray by the unsolvable cases. Castellani also indicated the promise of

predator-prey algorithms for classification problems involving imbalanced data classes. In this latter case, once the

categorisation of the most common classes is learned, the predator-prey procedure focuses on the examples of the least

represented class. One question that has not yet been addressed concerns how the performance of the competitive

approach scales up to large data sets. That is, how the ability of predator-prey mechanisms to identify challenging

training patterns varies as the number of data instances is increased.

2 Aims and Objectives

This study focused on the competitive coevolutionary approach to MLP training. Competitive coevolution is intended in

this paper as a multi-population procedure where interactions are modelled on predator-prey interactions [10]. Single-

population schemes where members of the same population are pitched against each other (e.g. backgammon players

[11]) are outside the scope of this paper. Hereafter, unless explicitly stated, the terms ‘competitive’ and ‘predator-prey’

will be used interchangeably. The aim of this work was to investigate the following two questions:

• how the effectiveness and efficiency of competitive coevolution vary as the size of the training set is increased.

• how competitive coevolution fares as the imbalance amongst data classes is increased.

Both research questions concern the ability of competitive coevolution to select critical information amongst

increasingly large data sets. Two different predator-prey algorithms were tested, and their performance compared to the

performance of a standard EA and the BP rule. In the class imbalance tests, oversampling [9] was used as a term of

comparison to evaluate the effectiveness of the two predator-prey algorithms.

It is important to underline that this work aimed at shedding further light on the strengths, shortcomings, and overall

viability of the competitive approach to MLP evolution. Ascertaining which of the many EA implementations [3] is

most effective for MLP training was outside the scope of the research. For this reason, the same EA was used to train

the MLP population in the two predator-prey algorithms and the standard EA. The experimental results are thus

expected to reveal the effect of the data evolution approaches tested, and be fairly independent of the kind of

evolutionary MLP optimiser used.

3 Methods

This section describes the methods used to investigate the scientific questions detailed in Section 2.

3.1 Data Sets

For ease of comparison with the literature, Paredis’ four class artificial classification problem [4][5] was used in the

tests. Paredis’ problem consisted of 200 data patterns defined in the �� domain	� = [−1,1] × [−1,1]. The data classes

were delimited as follows:

���� = �1			��	��, �� ∈ �	&	�� + �� < 0.25																																												2			��	��, �� ∈ �	&	�� > 1 − �	||	� < −1 − ��																								3			��	��, �� ∈ �	&	�� > 0.5	&	� < 0	||	� > 0	&	� < −0.5�4			#�#																																																																																															 (1)

In this study, a number of data sets were randomly generated in	�, labelling the data as in (1). A sample set is shown

in Fig. 1. All sets were divided into a training set of variable size ($) and composition, and a test set (the same for all

tests) of 1000 data patterns, equally partitioned into 250 patterns per class. The first set of experiments was carried out

on five training sets of size varying from 1000 to 20000 elements, equally distributed among the four classes. The

second set of experiments was carried out on four training sets of variable size, where class ‘1’ (‘minority’ class) was

respectively 5, 10, 15, and 20 times smaller than the other three classes. The main features of the data sets are

summarised in Table 1.

3.2 Algorithms

This study investigated the performance of two predator-prey algorithms: Co-Adaptive Neural Network Training

(CANNT) [8], and Co-Evolutionary Neural Network Training (CENNT) [8]. Both algorithms feature two coevolving

populations (classifiers and training patterns), and are composed of three modules: Predator, Prey, and Interaction. The

Predator module is the same for CANNT and CENNT. It evolves the classifiers, and can be thought of as a standard EA

for MLP evolution. The Prey module adapts (CANNT) or evolves (CENNT) the training data, and can be thought of as

42

An Experimental Study on Competitive Coevolution of MLP Classifiers

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

Figure 1: Data set 1K. For clarity, the boundaries between classes have been marked by a line

Table 1: Main features of data sets

 Overall Breakdown

Name Training patterns Class 1 Class 2 Class 3 Class 4 Test patterns

1K 1000 250 250 250 250

1000 patterns,

250 per class

5K 5000 1250 1250 1250 1250

10K 10000 2500 2500 2500 2500

15K 15000 3750 3750 3750 3750

20K 20000 5000 5000 5000 5000

UB5 800 50 250 250 250

UB10 1550 50 500 500 500

UB15 2300 50 750 750 750

UB20 3050 50 1000 1000 1000

another evolutionary procedure running in parallel to the Predator module. The candidate solutions of the Predator and

Prey modules meet in the Interaction module, where they are evaluated and Lamarckian evolution takes place. One

generation of the CANNT and CENNT algorithms includes the execution of one cycle of each of the three modules.

After a set number of generations have elapsed, the fittest MLP classifier is taken as the final solution. The performance

of the two coevolutionary algorithms was compared to the performance of the standard BP rule [2] (henceforth simply

referred to as BP) and a traditional EA [4] (henceforth simply referred to as EA).

3.2.1 Co-Adaptive Neural Network Training (CANNT)

The algorithm follows the same scheme of CGA [5], where a population of % MLPs is coevolved with a population of $ = ��&#�'(��)�)*	�#'� training patterns. Like CGA, the Predator module concatenates the MLP weights into one

long string of real numbers (chromosome). Differently from CGA, the Predator module uses generational replacement

with elitism [12] (steady-state in CGA), fitness ranking [12] (proportional selection in CGA), and no crossover (two-

point crossover [12] in CGA). The mutation operator of the Predator module changes all the elements (genes) of a

selected chromosome. For each gene, the perturbation is randomly sampled with uniform probability from a small

interval of fixed width. Lamarckian evolution occurs in the Interaction module. The structure of the MLP is pre-set and

does not undergo evolution, whilst the weights of the initial population are randomly set to a small value.

The population of training patterns (Prey module) does not undergo true evolution, since only the fitness of the

individuals is adapted. The fitness ��∙� of the training patterns is normalised in the interval	[0,1], where �,-./ = 0

indicates that pattern -. (0 ∈ [1, $]) was successfully categorised by all classifiers encountered, and �,-./ = 1 that was

misclassified by all classifiers encountered. At initialisation, all M training patterns are assigned fitness	�,-./ = 0.5.

In the Interaction module, each of the 12 (� ∈ [1, %]) predators (classifiers) is paired up with a sample	�2 of 32 4 $

prey (patterns) for Lamarckian evolution and evaluation. A different subset of training patterns is randomly picked for

each candidate MLP solution. Different subsets may have a different number of data patterns, and each pattern may be

included in different subsets. Each pattern -. has a probability �,-./ of being selected in each of the % training subsets.

That is, the fittest (most difficult) examples are the most likely to be picked. Each MLP has a chance of undergoing one

cycle of BP training, and then is evaluated. For each classifier	12 , Lamarckian evolution and evaluation are carried out

using the paired up subset	�2 . The fitness of 12 is equal to its classification accuracy:

 ��12� = 5�67�87 (2)

43

M. Castellani and R. Lalchandani

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

where ���2� is the number of patterns in �2 correctly classified by 12 , and 32 is the size of �2. The fitness �,-. , '/ of

training pattern -. at generation ' is calculated as: �,-. , '/ = 0.8 ∙ �,-. , ' − 1/ + 0.2 ∙ :;�<�=;�<� (3)

where >.�'� is the number of times -. was misclassified at iteration t, and ?.�'� is the number of training subsets -.

belongs to. That is, the fitness of a predator corresponds to its success in capturing (classify) prey, and the fitness of a

prey corresponds to how successful is to evade predation (be misclassified). Note that the fitness of both predators and

prey is normalised in	[0,1]. The first term at the right hand side of Eq. (3) carries over a memory of the past evaluations

of the training pattern, mimicking Paredis’ life-time fitness evaluation mechanism [5]. Further information on the

CANNT algorithm can be found in [8].

3.2.2 Co-Evolutionary Neural Network Training (CENNT)

CENNT uses the same Predator module used by CANNT. However, differently from CANNT that works at the level

of individual patterns, CENNT evolves entire subsets of the training set. That is, the candidate solutions of the Prey

module of CENNT are sets of patterns. The prey population is half the size of the predator population, namely		% 2⁄

individuals. Each solution is encoded as a binary string of size	$; if the 0<A element of the string is set to ‘1’ the

corresponding pattern -. is included in the training subset.

The Prey module of CENNT is akin to a standard Genetic Algorithm [12]. It uses generational replacement, fitness

ranking, two-point crossover [12], and bit flip mutation [12]. If an individual is selected for mutation, all the genes of

the chromosome have a pre-set probability of being changed. The population of the Prey module is randomly initialised,

giving each gene an equal probability of being set to ‘1’ or ‘0’. If during the evolution process an offspring is created

with all genes equal to ‘0’ (empty set), the individual is randomly re-initialised.

In the Interaction module, each training data subset is paired to two MLP classifiers. Each MLP 12 undergoes one

cycle of Lamarckian evolution on the associated data subset	�.. The fitness of 12 is then calculated as the average of its

classification accuracy on	�. . 	��12� = 57,6;/8; (4)

where 3. is the size of �., and �2,�./ is the number of patterns of �. correctly classified by 12 . The fitness of each

data subset �. is equal to: �,�./ = 1 − B� ∙ C57,6;/8; + 5D,6;/8; E (5)

where �2,�./ and �F,�./ are the two classifiers paired up to �..

In the original formulation, CENNT was slower than CANNT at discarding commonly learned patterns, and

consequently required longer execution times [8]. To address this shortcoming, a procedure was added to the

Interaction module. For each subset of the Prey module, each training pattern that is correctly classified by both MLPs

is discarded. That is, its associated gene is changed to ‘0’. This new procedure can be thought of as an instance of

Lamarckian evolution of the prey population. Further information on the CENNT algorithm can be found in [8].

3.2.3 Backpropagation and standard EA

The backpropagation rule with momentum term and a standard EA were used as terms of comparison for the

performance of CANNT and CENNT. BP was implemented using a stochastic learning scheme, that is, the ANN weights

were updated immediately after the presentation of each training pattern. The EA is the same evolutionary procedure

employed in the Predator module of the two coevolutionary algorithms. However, in EA the whole training set is used

by the Lamarckian learning and MLP fitness evaluation procedures.

3.2.4 Oversampling

Oversampling [9] was employed as an alternative method to redress the data imbalance problem. The procedure

duplicates the members of the least numerous (minority) class until all data categories have the same number of training

patterns. The procedure is implemented according to a deterministic scheme, where the members of the minority class

are duplicated one by one until class distribution has been balanced.

3.3 Tests

The first series of tests aimed to verify how the performance of the predator-prey algorithms is affected by the size of

the training set. The performance was analysed in terms of classification accuracy of the MLP solutions and speed of

execution. The speed of execution was evaluated using the number of data passes (forward or backward) performed by

the candidate solution(s). That is, a data pattern is processed by an MLP by forward processing the input information

from the input layer to the output layer. In the BP rule, the error information is processed backwards through the ANN

weights. Each of such passes was used as unit of measurement of speed. Based on experimental evidence, Castellani [8]

indicated that this measure can be regarded as a good proxy for the execution time of the algorithms. The efficiency and

44

An Experimental Study on Competitive Coevolution of MLP Classifiers

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

Table 2: Experimental tests

Test Objective Data Set Algorithm

1-5 Training set size 1K, 5K, 10K, 15K, 20K CANNT, CENNT, BP

6-9 Class imbalance size UB5, UB10, UB15,UB20 CANNT, CENNT, BP, EA, BP_B, EA_B

Table 3: Parameterization of the algorithms

Algorithm Test BP CANNT & CENNT CENNT CANNT & CENNT

Module PREDATOR PREY INTERACTION

Learning cycles
1-5 50000 20000 20000 20000

6-9 50000 50000 50000 50000

Population Size all n.a. 50 25 n.a.

BP learning rate
1-5 0.005 n.a. n.a. 0.01

6-9 0.01 n.a. n.a. 0.01

Momentum term all 0.1 n.a. n.a. n.a.

Initial MLP weights range
1-5 [-0.5, 0.5] n.a. n.a. [-0.05, 0.05]

6-9 [-0.05, 0.05] n.a. n.a. [-0.05, 0.05]

MLP weights mutation rate all n.a. 0.2 n.a. n.a.

MLP weights mutation width all n.a. 0.1 n.a. n.a.

BP operator rate all n.a. n.a. n.a. 0.8

BP operator cycles all n.a. n.a. n.a. 1

Crossover rate all n.a. n.a. 1.0 n.a.

Prey mutation rate all n.a. n.a. 0.3 n.a.

time of the predator-prey algorithms was investigated using data sets 1K-20K. Due to the excessively long execution

times, the EA algorithm was not used in this first series of tests.

The second series of tests examined the ability of the predator-prey algorithms to learn increasingly imbalanced data

distributions. The performance of CANNT and CENNT was compared to the performance of BP and EA on the UB5-

UB20 data sets, and the BP and EA after oversampling was applied. Henceforth, the BP and EA algorithms applied in

conjunction with oversampling will be called BP_B and EA_B, where the suffix ‘B’ stands for ‘balanced’.

The parameterization of the MLP and training algorithms was performed experimentally. The MLP structure was set

to 2 input nodes, one hidden layer of 30 nodes, and 4 output nodes (one per class). The hidden nodes used the hyper-

tangent transfer function, whilst the output nodes used the sigmoidal transfer function. Tables 2 and 3 summarise

respectively the experimental set up and the parameterization of the algorithms.

4 Experimental results

The results of the first series of experiments (tests 1-5) are given in Table 4 and visualised in Fig. 2. Table 4 reports the

median of the classification accuracy attained by each algorithm in 10 independent learning trials (left hand side) and

the median of the number of forward and backward passes performed by each algorithm per trial. For reference, the

rightmost column of Table 4 reports the number of passes that would be performed by a standard EA. For each data set,

the best accuracy result and those that are not significantly different from the best are highlighted in bold. The statistical

significance of the differences between the results was analysed using pairwise Mann-Whitney U tests. The tests were

run for a 5% level of significance. Fig. 2a-e visualise for each data set the first, second (median), and third quartile of

the accuracy attained by each algorithm on the 10 learning trials. Fig. 2f shows the variation of the median accuracy.

The results obtained in this first series of experiments show that the performance of the CANNT algorithm is largely

unaffected by the size of the data sets, whilst the CENNT algorithm becomes increasingly competitive as the size of the

training set increases. Conversely, the training accuracy of the BP algorithm deteriorates severely as the size of the

training set increases. In general, BP training became increasingly difficult as the training set became larger. The BP

learning rate had to be halved to prevent the algorithm to get stuck in regions of the parameter space where the gradient

saturated. For this reason, the duration of the BP procedure had to be increased to 50000 cycles. Further improvement

of the performance would have been possible increasing further the number of cycles, even though the learning curve

was extremely slow and the gains would have been modest in relation to the extra training time.

The two predator-prey algorithms required a number of data passes comparable to BP, and between 5 and 20 times

less the data passes that would have been required by a standard EA. The execution speed varied accordingly, ranging

between about 10 minutes on the smallest data set and over 5 hours on the largest data set. The CANNT algorithm gave

the best accuracy results, although CENNT became increasingly accurate and efficient as the data set size increased.

Indeed, on the two largest data sets the performance of the two competitive algorithms is statistically indistinguishable.

45

M. Castellani and R. Lalchandani

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

Table 4: Classification accuracy and computations vs. data set size

Data set Accuracy (%) Passes (× 10G)

 BP CENNT CANNT BP CENNT CANNT EA

1K 98.05 97.30 98.05 100 104 234 2000

5K 89.95 98.75 99.40 500 559 1143 10000

10K 86.25 98.55 99.40 1000 1232 2279 20000

15K 85.70 99.00 99.10 1500 1920 4383 30000

20K 83.60 99.20 99.30 2000 2725 7017 40000

a) 1K data set b) 5K data set

c) 10K data set d) 15K data set

e) 1K data set f) median accuracy vs. number of training patterns

Figure 2: classification accuracy vs. data set size

Paredis [5] and Castellani [8] reported top classification accuracies of respectively 96.45% and 96.53% on the same

classification problem. The accuracy results obtained in this study are slightly superior. This improvement in the quality

of the solutions is probably due to the fact that the training process was extended to 20000 generations, instead of the

10000 generations used by Castellani [8].

Table 5 reports the results of the second series of experiments following the same conventions used in Table 4.

Likewise, Fig. 3 visualises the results using the same format of Fig. 2a-f. The CANNT algorithm is always amongst the

46

An Experimental Study on Competitive Coevolution of MLP Classifiers

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

Table 5: Classification accuracy vs. class imbalance

 Overall

 BP BP_B CENNT CANNT EA EA_B

UB5 95.25 96.80 96.30 97.00 95.05 96.90

UB10 93.25 96.25 96.50 97.60 93.45 97.05

UB15 91.35 92.75 96.05 97.50 92.60 96.40

UB20 89.15 87.90 96.35 97.15 91.50 96.90

 Minority Class (class 1)

 BP BP_B CENNT CANNT EA EA_B

UB5 86.80 93.80 91.80 94.40 87.20 94.80

UB10 78.20 92.80 91.80 94.20 77.40 92.80

UB15 72.60 88.00 88.80 92.60 73.60 90.00

UB20 67.00 83.80 89.40 91.20 69.60 92.00

 Passes �× 10G�

 BP BP_B CENNT CANNT EA EA_B

UB5 80 100 231 431 5200 6500

UB10 155 200 308 802 10075 13000

UB15 230 300 399 1172 14950 19500

UB20 305 400 501 1516 19825 26000

 a) UB 5 data set b) UB 10 data set

c) UB 15 data set d) UB 20 data set

Figure 3: classification accuracy vs. class imbalance

best performers. CENNT evolved less accurate classifiers than CANNT, although its performance appeared to improve

slightly with the data set size. In terms of computational overheads, the number of data samples required by CANNT

increased proportionally to the class imbalance, whilst the CENNT algorithm was more economical. Compared to BP

and BP_B, the predator-prey procedures required between 2 (CENNT) and 5 (CANNT) times more training data passes,

whilst the standard evolutionary procedures required between 65 (CENNT) and 80 (CANNT) times more passes. The

reduced computational needs of CANNT and CENNT translated into much reduced execution times compared to EA and

EA_B. That is, whilst the predator-prey procedures required a couple of hours to complete one learning trial on the

largest (UB20) data set, the standard EA procedures required nearly one day.

47

M. Castellani and R. Lalchandani

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

The ability of BP and EA to satisfactorily categorise the minority class decreases as the class imbalance increases.

Oversampling sensibly improves the classification accuracy of BP_B and EA_B on the less numerous class. However,

oversampling creates multiple copies of the instances of the minority class, and thus increases the size of the training

set. Unfortunately, the learning accuracy of BP deteriorates on large training sets (see Table 4), and the gains in

accuracy on the minority class are offset by an overall loss in accuracy. Indeed, on the set with the largest imbalance

(UB20), the overall accuracy of BP_B is inferior to the accuracy of BP. The performance of the evolutionary procedures

is not affected by the size of the training set, and EA_B attains competitive accuracy results on nearly all data sets.

Unfortunately, oversampling increases the computational complexity of EA_B, and the number of MLP training data

passes performed by EA_B on the UB20 set is about 50 times the number of passes performed by CENNT.

5 Conclusions

This paper analysed the performance of the CANNT and CENNT predator-prey algorithms on data sets of varying size

and class imbalance. Overall, the CANNT algorithm produced the most accurate classifiers. However, on the largest

data sets CENNT was competitive in terms of quality of the solutions, and excelled in terms of economy of training set

samples. The above results suggest that CANNT should be used on data sets of moderate size, and CENNT on large sets.

The two predator-prey algorithms confirmed their effectiveness on classification problems characterised by class

imbalance. Large training sets were problematic for the BP and standard EA algorithms. In the first case, the algorithm

was unable to train highly accurate solutions on the largest data sets. In the second case, the algorithm execution time

was unacceptably long. The BP and standard EA algorithms failed also to train satisfactorily the classifier in presence of

class imbalance. In particular, the solutions produced by BP and the standard EA performed poorly on the minority

class. Oversampling was effective in compensating the class imbalance problem, but created large data sets where the

accuracy of BP and the execution speed of the standard EA were impaired.

This study on the effects of data set size and class imbalance on the performance of competitive coevolution is an

original contribution of this paper. This paper also introduced a new Lamarckian learning procedure in CENNT, which

removes already learned patterns from the candidate training subset. Thanks to this new procedure, CENNT excelled in

the economy of training data samples, and hence execution speed. Future work should investigate further the ability of

competitive coevolution to address class imbalance problems. The effectiveness and efficiency of CANNT and CENNT

should be compared with that of other popular methods to redress class imbalance, such as undersampling, boosting

[9], and cost-sensitive learning [9].

References

[1] Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, New York, USA (2009).

[2] Rumelhart, D., McClelland, J.: Parallel distributed processing: explorations in the microstructure of cognition, vol.

1-2, MIT Press, Cambridge, USA (1986).

[3] Yao, X.: Evolving Artificial Neural Networks. Proceedings IEEE 87(9), pp. 1423-1447 (1999).

[4] Castellani, M.: Evolutionary Generation of Neural Network Classifiers - An Empirical Comparison.

Neurocomputing 99, pp. 214-229 (2013)

[5] Paredis, J.: Coevolutionary life-time learning. In: I. Rechenberg and H.P. Schwefel (ed.) Parallel Problem Solving

from Nature - PPSN IV, pp. 72-80. Springer, Berlin Heidelberg, (1996).

[6] Paredis, J.: Coevolutionary computation. Artificial life 2(4), pp. 355-375 (1995).

[7] Whitley, D.: The Genitor algorithm and selection pressure: why rank-based allocation of reproductive trails is best.

In: JD Schaffer (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 116-123. San

Mateo, CA, Morgan Kaufmann Publishers, San Francisco, USA (1989).

[8] Castellani, M.: Competitive co-evolution of multi-layer perceptron classifiers. Soft Computing, published online

(2017). DOI 10.1007/s00500-017-2587-6

[9] Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter 6(1), pp. 7-19

(2004).

[10] Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary principles. In: G. Rozenberg et al. (ed.)

Handbook of Natural Computing, pp. 987-1033. Springer, Berlin Heidelberg (2012).

[11] Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Machine Learning

32(3), pp. 225-240 (1998).

[12] Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine intelligence, 2nd edn. IEEE Press,

New York, USA (2000).

48

An Experimental Study on Competitive Coevolution of MLP Classifiers

