
EFFICIENT COMPUTATION OF FITNESS FUNCTION FOR
EVOLUTIONARY CLUSTERING

Sergey Muravyov�, Denis Antipov, Arina Buzdalova, Andrey Filchenkov
Computer Technology Lab, ITMO University, Russia

smuravyov@itmo.ru�, dantipov@itmo.ru, abuzdalova@gmail.com, afilchenkov@itmo.ru

Abstract
Evolutionary algorithms (EAs) are random search heuristics which can solve various
optimization problems. There are plenty of papers describing different approaches
developed to apply evolutionary algorithms to the clustering problem, although
none of them addressed the problem of fitness function computation. In cluster-
ing, many clustering validity indices exist that are designed to evaluate quality
of resulting points partition. It is hard to use them as a fitness function due to
their computational complexity. In this paper, we propose an efficient method for
iterative computation of clustering validity indices which makes application of the
EAs to this problem much more appropriate than it was before.

Keywords: Clustering, evolutionary clustering, clustering validity indices, fitness
function.

Received: 09 May 2019
Accepted: 07 June 2019
Published: 24 June 2019

1 Introduction

The goal of clustering is to define a finite set of categories (clusters) to describe a dataset according to similarities
among its objects [1]. There are plenty of applications of clustering: from image processing [2] and market
segmentation [3] to web mining [4] and document categorization.

Clustering problem is initially formulated in general terms. Many mathematical formalisms were suggested
to describe it. It was recognized quite a long time ago that the selection of a certain formalism to estimate the
clustering quality will strongly influence both the algorithm that should be chosen and the result claimed to
be the best [5], and that it is hard to compare different formalisms [6]. Kleinberg formulated three essential
properties of clustering algorithms and proved that there is no way to create an algorithm that fits all these
properties simultaneously [7].

There are two ways of evaluating clustering partitions, namely internal and external measures. External
measures use some extra information about the task, for example, different benchmarks or class labels. These
measures can not be applied in real life, because there might not be any external information about the problem
to be solved. Internal measures use only the information about the structure of partition itself and only clustering
validity indices (CVIs) satisfy this requirements.

Approaches to solve clustering task can be also divided into two categories: indirect, when we use a black-
box optimization algorithm with built-in quality evaluation measure, for example, k−Means [8], Spectral al-
gorithm [12], DBSCAN [9] that are actually conventional clustering algorithms; and direct when we can set
quality measure and search for the optimal partition in the space of all possible partitions for a given task. This
problem is a discrete optimization task, one of the ways to solve it is to apply evolutionary algorithms [10].

Evolutionary algorithms (EAs) is a general name of a class of the random search heuristics that were inspired
by the ideas of natural evolution. Namely, they are based on iterative improvement of some existing solution
via mutation, crossover and selection operators. Often evolutionary algorithms cannot find optimal solution in
reasonable time, however they were found effective for finding good enough solutions pretty fast. This makes
them suitable for solving NP-hard problems, which clustering problem belongs to.

To apply an EA one first needs to define a quality measure for all solutions,, which is often called a fitness
function. The main problem of all CVIs is super linear time complexity that might be crucial for the performance
of an evolutionary clustering algorithm, no matter what strategy is chosen.

In this paper, we propose new incremental methods for computation of different CVIs’ and provide experi-
ments on several primitive strategies to find out if our method works faster than conventional CVI computation
with the same outcomes. We study how using of the incremental CVI evaluation can improve the performance
of three considered EAs solving a clustering problem.

The structure of the paper is following. Section 2 contains the description of incremental methods and
provides the comparison with conventional CVI computation on different datasets. In section 3, we provide
a description of the strategies that were used to test the CVI incremental computation approach. Section 4
provides the information about experiments.

https://doi.org/10.13164/mendel.2019.1.087
ISSN: 1803-3814 (Printed), 2571-3701 (Online)

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

87

2 Incremental CVI evaluation

In this section, we provide the description of new methods of incremental CVI computation. We considered
19 CVIs in this paper: Calinski-Harabasz index, Dunn index, C-Index, Davies-Bouldin Index, Modified Davies-
Bouldin Index, Silhouette index, gD31, gD41, gD51, gD33, gD43, gD53 indices, CS index, Sym-Index, SymDB
index, COP index, SV index, OS index, S Dbw index. Descriptions of all these CVIs can be found in [11]. Due
to the size limits of the paper we provide detailed incremental methods only for Calinski-Harabaz index, COP
index, Silhouette index and Modified Davies-Bouldin index. Implementations of incremental computation for
the other indices can be found in our repository1. Although we do not provide the methods for all the CVIs
used in the paper, in the Table 2 we show that incremental recalculation complexity is much better than full
recalculation of each CVI.

Table 1: Time complexity comparison between full and incremental recalculation of CVIs

CVI Full time complexity Incremental time complexity

Calinski-Harabasz index O(n log n) O(n)
Dunn index O(n2) O(1)
Davies-Bouldin Index O(n log n) O(n)
Modified Davies-Bouldin Index O(n log n) O(n)
Silhouette index O(n2) O(n)
C-Index O(n log n) O(n)
gD31 O(n2) O(n)
gD41 O(n2) O(n)
gD51 O(n2) O(n)
gD33 O(n2) O(n)
gD43 O(n2) O(n)
gD53 O(n log n) O(n)
CS index O(n log n) O(n)
Sym-Index O(n2) O(n)
SymDB index O(n2) O(n)
COP index O(n2) O(n)
SV index O(n log n) O(n)
OS index O(n2 log n) O(n)
S Dbw index O(n log n) O(n)

2.1 General notation

First, we introduce some formal notations of incremental computation. We denote by X a dataset, which
consists of N points; C is its partition consisting of clusters C1, · · · , Cm. Centroid of cluster Ci is defined
accordingly:

Ck =
1

|Ck|
∑

xi∈Ck

xi. (1)

The centroid of the entire dataset is defined as follows:

X =
1

N

∑
xi∈X

xi. (2)

The formula of the Euclidean distance between objects p and q, that has dimensionality n, of the dataset is:

de(p, q) =

√ ∑
k=1..n

(pk − qk)2 (3)

The mutation operator used inside EAs changes the structure of partition C by moving some points from
one cluster to another. The task of incremental CVI recalculation is to effectively recalculate the value of
CVI after such small change in the structure without recalculating it from scratch (which can take too much
time). Further when discussing the iterative recalculation of CVI we denote by xid the point that was moved
by mutation, by Ca the initial cluster of this point and by Cb — the cluster this point was moved to.

1https://github.com/AntipovDen/EvoClusterization

Efficient Computation of Fitness Function for Evolutionary Clustering

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

88

https://github.com/AntipovDen/EvoClusterization

2.2 Calinski-Harabasz index

This measure is calculated by the formula:

CH(X) =
N −K
K − 1

∑
Ck∈C |Ck|de(Ck, X)∑

Ck∈C
∑

xi∈Ck
de(xi, Ck)

. (4)

The numerator is the sum of the distances from the centroids of the clusters to the centroid dataset, the
denominator is the sum over the distances from points to the centroids of their clusters. Accordingly, when
recalculating, it is necessary to update the standing from Ca to X, from Cb to X and also the distances from
the points of the Ca cluster to its centroid, from the points of the Cb cluster to its centroid and remove the
distance de(xid, Ca), and instead add the distance de(xid, Cb). But since updating the distances from all points
to the centroid is a rather expensive operation, the following optimization was applied – if the centroid moved
less than ε multiplied by the diameter of the dataset, the corresponding distances are not recalculated.

Complexity assessment: the measure itself is calculated for O(n), where n is the size of the dataset, but since
it is still necessary to additionally calculate the diameter for optimization during the recalculation, the diameter
calculation adds O(n log n) to asymptotics, so that the final asymptotics is obtained just as follows. Incremental
counting takes O(n) for updating centroids. Further, if the distances from the points to the centroids are not
recalculated (and recalculation will be necessary only in the worst case, when the centroid will move strongly),
then the final operations will take O(1), and in general the final estimate is O(n). If we had to recalculate the
distance to the centroids, then this adds another O(n) pass with the calculation of the Euclidean metric.

2.3 COP index

The measure is calculated as follows:

COP (C) =
1

N

∑
Ck∈C

|Ck|
1/|Ck|

∑
xi∈Ck

de(xi, Ck)

minxi /∈Ck
maxxj∈Ck

de(xi, xj)
(5)

During the initial calculation it is proposed to save de(xi, Ck), it is also necessary to save de(xi, xj) for each i
and j, all possible distances for counting maxima (two-dimensional array), and also all maxima for a minimum
(one-dimensional array). In other words, for each cluster we will separately store an array of numerators and
denominators.

During the recalculation procedure, it will be necessary to remove de(xid,Ca) from the numerator for the
term for Ca and add the term de(xid, Cb) for the numerator of Cb. The distances from the points of the Ca

and Cb clusters to their centroids will not be recalculated if the centroids have shifted less than ε multiplied by
the diameter of the dataset. Also, in the arrays for the denominator Ca, it will be necessary to add all possible
distances de(xid, xj), where xj ∈ Ca, and remove all possible distances de(xid,j), where xj ∈ Cb, from the arrays
for the denominator Cb. Then you just need to recalculate private for Ca and Cb.

Complexity assessment: the initial calculation of the measure requires the calculation of all possible
de(xi, xj), which takes O(n2) time, then you just have to count the minima and maxima de(xi, Ck), all this
together takes O(n2) time, and it is still necessary to calculate the diameter to accelerate the incremental
conversion, which takes O(n log n) time, but the final asymptotic remains O(n2).

During recalculation it is necessary to update the arrays of the corresponding numerators and denominators
for Ca and Cb and recalculate the minima and maxima only for Ca and Cb and only if new distances for Ca

are less or more, and for Cb only if xid . It is also required to update centroids for O(n) time and, in the worst
case, to recalculate additionally the distances from points to centroids of the Ca and Cb clusters for O(n), but
the final asymptotics remains O(n) time.

2.4 Silhouette index

The measure is calculated as follows:

Sil(C) =
1

N

∑
Ck∈C

∑
xi∈Ck

b(xi, Ck)− a(xi, Ck)

max(a(xi, Ck), b(xi, Ck))
, (6)

where
a(xi, Ck) = 1/|Ck|

∑
xj∈Ck

de(xi, xj), (7)

and
b(xi, Ck) = min

Cl∈C\Ck

(1/|Ck|
∑

xj∈Cl

de(xi, xj)). (8)

S. Muravyov et al.

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

89

Here, a(xi, Ck) and b(xi, Ck) are computed for all points in the dataset. Accordingly, it is necessary to keep
them during the initial calculation. Then, when moving point xid from cluster Ca to cluster Cb, you need to
re-calculate a(xid, Cb) and b(xid, Cb), and also update the values of a(xi, Ck) and b(xi, Ck) for all points of the
clusters Ca and Cb. Then you need to re-calculate the sum and get an answer.

Complexity assessment: counting a(xi, Ck) and b(xi, Ck) takes O(n) times, respectively, counting them for
all points takes O(n2) time. Further, the final answer is calculated for O(n). During recalculation procedure,
it is necessary to re-calculate the functions a(xi, Ck) and b(xi, Ck), but only for one point, which takes O(n).
Further, the values of these functions are updated in O(1) for all points of the clusters Ca and Cb, which also
takes O(n), and the counting of the final answer also takes O(n). So the final complexity of the recalculation is
O(n).

2.5 Modified Davies-Bouldin index

First let’s consider the original Davies-Bouldin index formula:

DB(C) =
1

K

∑
Ck∈C

max
Cl∈C\Ck

S(Ck) + S(Cl)

de(Ck, Cl)
, (9)

where
S(Ck) = 1/|Ck|

∑
xi∈Ck

de(xi, Ck). (10)

In the implementation, the function S(Ck) is used, during the initial calculation it is proposed to save it. It
is also necessary to calculate in advance the sums of all possible S(Ck) +S(Cl), then divide them by de(Ck, Cl)
and store. Accordingly for the CVI computation it is necessary to find the maximum by the sets of this divisions.

Now, to recalculate this CVI, it is necessary to update S(Ca) and S(Cb) and the saved quotients, in which
S(Ca) and S(Cb) were used, to find the maximum. But the operation of recalculating distances from a point
to the centroid of its cluster is expensive – therefore, if the centroid has moved less than ε, multiplied by the
diameter of the dataset, S(Ca) and S(Cb), will not be recalculated. At the end, the search for the maximum is
performed again.

Complexity assessment: the initial calculation takes O(n) to find all S(Ck) and O(n log n) to find the
diameter of the dataset, which is necessary to speed up the conversion. Recalculation takes O(n) in the worst
case, so if the centroids have greatly moved, and in the best case it is O(K), where K is the number of clusters,
but it is very small compared to the size of the dataset, therefore this asymptotics is equal to O(1), and it is
also necessary at the beginning to recalculate the centroids, which will take O(n) time, so the final complexity
is O(n).

Next, consider the modified Davies-Bouldin index. The CVI is calculated as follows:

DB∗(C) =
1

K

∑
Ck∈C

maxCl∈C\Ck
(S(Ck) + S(Cl))

minCl∈C\Cl
de(Ck, Cl)

. (11)

Here, the recalculation principal practically coincides with the recalculation principal of the original Dadies-
Bouldin index, the main difference is that we save not the divisions, but the sums from the numerator. To
recalculate the denominator, it will be necessary to recalculate the corresponding de(Ck, Cl) for combinations
with Ca and Cb.

The complexity estimate is the same as the complexity of the original Davies-Bouldin index, that is O(n log n)
to be recalculated, and O(n) for recalculation, because the recalculation of the denominator will take a maximum
of O(K2), which is O(1) in the current scope, and the recalculation of the numerator essentially coincides with
the recalculation of the division in the original Davies-Bouldin index.

3 Evolutionary strategies

In this section, we describe three evolutionary strategies used in our experiments. For all of them by ini-
tial solution we mean some partition that was obtained through application of some conventional clustering
algorithm.

Greedy algorithm. This one of the most simple EAs iteratively mutates the initial solution while it
manages to find some strictly better solution. Namely, it stops as soon as the solution that it obtains through
the mutation of the best-so-far solution is not the new best one.

The mutation operator first calculates for each point x the distances to the centroids of each cluster that x
does not belong to. Then it finds ρx, that is, the minimal of such distances for point x. Finally, it moves 2t

points, where t is the number of the current iteration, with minimal ρx to the clusters that are the nearest to

Efficient Computation of Fitness Function for Evolutionary Clustering

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

90

those points (in terms of the distance to the centroid). All ties in selection of the points to move as well as in
choice of the nearest centroid are broken uniformly at random.

(1 + 1) EA. This algorithm generally reproduces the principles of the greedy algorithm, but uses different
stopping criteria and mutation operator. The (1 + 1) EA keeps the best-so-far partition and on each iteration
mutates it and replaces the current one with the new one if the new partition is not worse than the current one.
It stops after its time limit is reached.

In contrast to the greedy algorithm, the mutation operator of (1 + 1) EA is randomized. First, it also
calculates ρx, the distance to the nearest cluster for each point x. Then it chooses some number of points to
move, and each point x is chosen with a probability proportional to ρ−1x . The number of points to move is equal
to the veiled mutation rate for the current population.

To increase the effectiveness of our algorithm, we use the 1/5-th rule to control the value of the mutation
rate. Initially the mutation rate is one. After each successful iteration, which is such that the new solution is
at least as good as the best-so-far solution, we divide the mutation rate by two (but it cannot become less than
one point). After unsuccessful iteration we multiply the mutation rate by 21/4, but bound it with the half of the
size of the solution. This rule while being easy to implement has been shown to be effective both in practical
and theoretical analysis [13].

(1 + 4) EA. The main difference of this EA from the (1 + 1) EA is that in each iteration it generates and
evaluates 4 new solutions in parallel. This increases the cover of the search space and helps to find new better
solutions. However, parameter control for this algorithm is more complicated, so we do not use the 1/5-th rule
for it. Instead, we generate the 4 solutions with different mutation rates, namely 1, 2, 4, and 8, using the same
mutation operator as for the (1 + 1) EA.

4 Experiments

In Section 2, we showed that the theoretical time complexity of the proposed incremental CVI recalculation
methods is lower than the time complexity of the conventional recalculation. Here we provide experiments to
check this statement in practice. Also we check the reliability of the incremental computation. Some incremental
CVI computations have approximations, for example approximate calculation of centroids. So we have to check
if incremental CVI computations make the same results as conventional CVI computations.

Experimental setup was the following: we took 5 datasets from the UCI database2: glass, iris, wholesale,
seeds, and ionosphere. We used 4 CVIs mentioned in Section 2. Each strategy from Section 3 was performed
10 times for each dataset and each CVI (all runs had the same initial clustering obtained through Spectral
clustering algorithm [12]). The results of the experiments are shown in Table 2 and Figure 1.

In Figure 1 we present the results of our study on the reliability of incremental CVI computation. We used
the same experiment setting for each dataset and each CVI. We compare each algorithm using the incremental
CVI computations and the conventional CVI computations. We set time limit of 5 minutes for all of the
experiments.

We exclude the results for the greedy algorithm from Table 1, since this algorithm has not reached any CVI
improvements regardless the way of CVI computation.

From Figure 1, we conclude that in most cases incremental CVI computation provide almost the same CVI
rates as conventional computation, so we showed the reliability of suggested incremental CVI computation
approach. We also note few exceptions that might be caused by finding some local minimum by (1+1) strategy,
especially modified Davies-Bouldin index on wholesale and iris datasets.

In Table 2, we present the results of our study on how much faster the optimization algorithms with
incremental CVI are than the ones with conventional CVI. In these experiments for each pair dataset-CVI we
first ran each algorithm with incremental CVI and time limit of 5 minutes. Then we ran the same algorithm with
conventional CVI until it found some clustering that was at least as good as the one found by the corresponding
run of the algorithm with incremental CVI (with the same initialization). These runs can take too much time,
so we also added the time limit of 25 minutes for them.

In this approach we have a risk that a run of an algorithm with an incremental CVI does not improve the
initial cluster. Therefore, the corresponding run of the algorithm with a conventional CVI does not perform
any iteration, since its initial clustering is already as good as the one found by the first algorithm. We call such
unfortunate runs invalid runs and we call all other runs valid.

Among the valid runs we also distinguish successful runs, that are the runs of an algorithm with conventional
CVI that have finished before their time limit. The ratio of the successful runs to the valid runs is shown in the
last column of Table 2.

In order to calculate the expected mean value of the algorithm runtime and the standard deviation of the
runtime we use the same technique as in [14]. It was developed for the populations estimation but can be also

2https://archive.ics.uci.edu/ml/datasets.php

S. Muravyov et al.

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

91

https://archive.ics.uci.edu/ml/datasets.php

gl
as

s
iri

s

w
ho

le
sa

le

se
ed

s

io
no

sp
he

re
0

5

10

M
ea

su
re

im
p

ro
ve

m
en

t
Calinski-Harabaz

(1 + 1)

(1 + 1)*

(1 + 4)

(1 + 4)*

gl
as

s
iri

s

w
ho

le
sa

le

se
ed

s

io
no

sp
he

re
0

2

4

6

·10−2

M
ea

su
re

im
p

ro
ve

m
en

t

COP

(1 + 1)

(1 + 1)*

(1 + 4)

(1 + 4)*

gl
as

s
iri

s

w
ho

le
sa

le

se
ed

s

io
no

sp
he

re
0

5 · 10−2

0.1

M
ea

su
re

im
p

ro
ve

m
en

t

Modified Davies-Bouldin

(1 + 1)

(1 + 1)*

(1 + 4)

(1 + 4)*

gl
as

s
iri

s

w
ho

le
sa

le

se
ed

s

io
no

sp
he

re
0

0.5

1

·10−2

M
ea

su
re

im
p

ro
ve

m
en

t

Silhouette

(1 + 1)

(1 + 1)*

(1 + 4)

(1 + 4)*

Figure 1: Comparison of different CVI improvements for each dataset. Algorithms without star (*) mark
use incremental CVI computation, algorithms with a star use conventional CVI computation. Both types of
algorithms perform 10 runs each and have 5 minutes time limit.

Efficient Computation of Fitness Function for Evolutionary Clustering

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

92

Table 2: Time estimations for the algorithms that use conventional CVI computation. Algorithms with incre-
mental CVI computation reach the same measure rates in 5 minutes in all the cases.

Dataset CVI
Mean, min Deviation, min Successful runs

(1 + 1) (1 + 4) (1 + 1) (1 + 4) (1 + 1) (1 + 4)

glass
Calinski-Harabaz 75.1 — 86.6 — 2/8 —

COP 22.8 > 25 30 unknown 5/9 0/10
Modified Davies-Bouldin > 25 — unknown — 0/9 —

Silhouette 50.2 0.0298 61.2 0.000224 3/9 10/10

iris
Calinski-Harabaz > 25 > 25 unknown unknown 0/6 0/10

COP 17.1 > 25 26.4 unknown 6/10 0/10
Modified Davies-Bouldin 3.58 — 10.1 — 7/8 —

Silhouette > 25 > 25 unknown unknown 0/4 0/10

wholesale
Calinski-Harabaz 3.52 — 8.79 — 9/10 —

COP 68.1 > 25 70.1 unknown 3/10 0/10
Modified Davies-Bouldin 0.192 > 25 0.139 unknown 10/10 0/10

Silhouette 23.4 > 25 30.2 unknown 5/9 0/10

seeds
Calinski-Harabaz 31.3 > 25 41.9 unknown 4/9 0/10

COP 234 — 237 — 1/10 —
Modified Davies-Bouldin 6.45 — 14 — 8/10 —

Silhouette 20 > 25 26.6 unknown 6/10 0/10

ionosphere
Calinski-Harabaz 75.1 — 86.6 — 2/8 —

COP 37.8 — 48.4 — 4/10 —
Modified Davies-Bouldin 3.98 — 8.81 — 9/10 —

Silhouette 50.5 > 25 61.2 unknown 2/6 0/10

applied to the algorithm runtime calculation. Let ES be the average of runtime for successful runs, R be the
ratio of successful runs, G be the maximum runtime until restart and DS be the standart deviation of runtime
for successful runs. Then the expectation of the runtime until success E is:

E = ES +
1−R
R

G. (12)

The standart deviation of the runtime D can be estimated by the equation:

D =

√
E2

S − E2 +D2
S +

1−R
R

(G2 +GE). (13)

However, the expected mean can be calculated only if the number of successful runs is at least 1. If for
some setting we do not have any successful runs, we can only conclude that the mean runtime is at least the
time limit and cannot say anything about its deviation. In Table 2 in such cases we write “> 25” for the mean
runtime and “unknown” for its deviation.

We also exclude the results for the greedy algorithm from Table 2, since the valid runs of this algorithm
were observed only in one setting.

From Table 2 we conclude that in most settings the algorithm with conventional CVI computation require
much more time to find a clustering that is at least as good as the one found by the same algorithm with
incremental CVI computation in 5 minutes. The few exceptions are highlighted in Table 2. We note that for
three of these five exceptions deviation is relatively high, and the 5 minutes time limit given for the algorithm
with incremental CVI computation lies inside the confidence interval.

For the other two exceptions (Silhouette index on the glass dataset and modified Davies-Bouldin index on
the wholesale dataset) we noticed that it took no more than 166 iterations for the algorithm with conventional
CVI to reach the desired value of measure. This implies that the algorithm with iterative CVI also finds such
good clustering in a small number of iterations and then does not improve it until it reaches its time limit.

5 Conclusion

In this paper, we present and examine a new fast method of fitness function computation for evolutionary
clustering algorithms. The proposed approach is based on gathering temporary data from CVI computation on
previous iteration. It appears that our approach achieves better results than the conventional CVI computation

S. Muravyov et al.

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

93

in most of the considered cases. The suggested method is planed to be tested on more sophisticated evolutionary
strategies [15].

Acknowledgement: The methods for incremental CVIs computation were developed under the research
project financially supported by The Russian Science Foundation, Agreement 17-71-30029.

References

[1] Kaufman, L. and Rousseeuw, P. J. 2009. Finding groups in data: an introduction to cluster analysis,
vol. 344. John Wiley & Sons, USA.

[2] Jain, A. K. and Dubes, R. C. 1998. Algorithms for clustering data, vol. 6. Prentice hall, Englewood Cliffs,
NJ, USA.

[3] Bigus, J. P. 1996. Data mining with neural networks: solving business problems from application develop-
ment to decision support. McGraw-Hill, New York, USA.

[4] Mecca, G., Raunich, S., and Pappalardo, A. 2007. A new algorithm for clustering search results Data &
Knowledge Engineering 62, 3, pp. 504–522.

[5] Anderberg, M. R. 1973. Cluster analysis for applications: probability and mathematical statistics: a series
of monographs and textbooks. Academic press, USA.

[6] Bonner, R. E. 1964. On some clustering techniques. IBM journal of research and development 8, 1, pp.
22–32.

[7] Kleinberg, J. M. 2003. An impossibility theorem for clustering. In Advances in Neural Information Pro-
cessing Systems 15 (NIPS 2002). MIT Press, pp. 463–470.

[8] Arthur, D. and Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms.ACM, New Orleans, Louisiana, pp.
1027–1035.

[9] Ester, M. et al. 1996. A density-based algorithm for discovering clusters in large spatial databases with
noise In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining –
KDD 1996. AAAI Press, Portland, Oregon, pp. 226–231.

[10] Chakrabarti, D., Kumar, R., and Tomkins, A. 2006. Evolutionary clustering. In Proceedings of the 12th
ACM international conference on Knowledge discovery and data mining – SIGKDD 2006. ACM, Philadel-
phia, PA, pp. 554–560.

[11] Arbelaitz, O. et al. 2013. An extensive comparative study of cluster validity indices. Pattern Recognition
46, 1, pp. 243–256.

[12] Ng, A. Y., Jordan, M. I., and Weiss, Y. 2002. On spectral clustering: Analysis and an algorithm. Advances
in neural information processing systems 14, 2, pp. 849–856.

[13] Doer, B. and Doer, C. 2015. Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-
th. In Proceedings of the Genetic and Evolutionary Computation Conference – GECCO 2015. ACM, pp.
1335–1342.

[14] Buzdalov, M. and Buzdalova, A. 2013. Adaptive Selection of Helper-Objectives for Test Case Generation.
In 2013 IEEE Congress on Evolutionary Computation. IEEE, pp. 2245–2250. DOI: 10.1109/CEC.2013.
6557836

[15] Hruschka E. R. et al. 2009. A survey of evolutionary algorithms for clustering. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2, 39, pp. 133–155.

Efficient Computation of Fitness Function for Evolutionary Clustering

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

94

